所在位置: 主页 > 手赚资讯 > 汽车空调离合器

汽车空调离合器

发布时间:2024-07-18 01:20:31来源:网络点击:

  仪器信息网汽车空调离合器专题为您提供2024年最新汽车空调离合器价格报价、厂家品牌的相关信息, 包括汽车空调离合器参数、型号等,不管是国产,还是进口品牌的汽车空调离合器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合汽车空调离合器相关的耗材配件、试剂标物,还有汽车空调离合器相关的最新资讯、资料,以及汽车空调离合器相关的解决方案。

  近日,我司与名光机器株式会社合作引进汽车空调检测和实验设备。 空调组合的信赖性在21世纪越来越受到重视。名光机器从1965年从事加热试验器的制作开始研究开发设备到制造检查设备,在空调领域积累了丰富的技术和经验。当中,在硬件和软件的两方面,具备先进的产品制造工艺和提供业务担当,得到了高度的评价。今后作为对广大的客户的协助,我们将提供更加灵活和最新的技术。 名光机器株式会社的汽车空调检测设备从多个方面对汽车空调的性能作出评估。 名光的各种检查装置: 与汽车空调相关联压缩机性能试验装置压缩机耐久试验装置气体不足耐久试验装置公交车用压缩机耐久试验装置。冷冻车压缩机耐久试验装置 配管洗净装置压缩机生产线设备气动式性能检测装置制冷剂式性能检测装置异音检测装置油注入装置气体装入装置 与空调用压缩机相关联压缩机性能试验装置压缩机耐久试验装置压缩机声音试验符合部各种回路部件评价试验装置各种压缩机电器部件检测装置 与汽车零配件相关 软管加热· 耐压· 振动试验装置软管击打试验能量转换泵试验装置水泵试验装置油泵试验装置电磁离合器试验装置汽车等的交流发电机试验装置泥浆试验装置热电偶单元试验装置油压单元测定装置散热器耐压试验装置油冷却耐压试验装置风扇耐久试验机皮带轮耐久试验机轴承耐久试验机座椅耐久试验机引擎负荷装置传送带检测用负荷装置扩展性能检查装置

  2013年9月10日,亚洲唯一在汽车生产检测质量工程方面最具权威性的展览会&mdash 2013汽车测试及质量监控博览会(中国&bull Automotive Testing China Expo 2013)在上海举办,加野Kanomax、新科集团携手倾力出展。 近年来加野Kanomax集团在推出众多新品并广泛收获市场好评后,再度乘胜出击,协同国内优质精密仪器生产商&mdash 新科集团,面向国内汽车行业提供精密测试解决方案,展示最先进的测试技术和设备。 纵观当前汽车行业,对于汽车质量和安全性上的需求与日俱增,此次展会两个集团合作推出的产品&mdash 汽车空调假人系统,能够很好的助力汽车生产商完成汽车舒适度的性能评估。 该系统使用人体模型,模拟在车辆内部乘员的测量系统,从而完成汽车内部的舒适性能评价。假人身体上的不同位置可嵌入四种传感器,同时多点位测量温度、湿度、风速和热辐射。此外,由于假人关节处的特殊构造,接近人体弯曲。通过测量特定点的模拟环境,直观呈现完整舒适度体验。 此外,加野Kanomax集团的智能热式风速仪65 Ser和四通道风速仪KA12,能够很好地完成汽车空调系统性能试验,更好的控制、稳定汽车内部的气候环境。

  面临的挑战:汽车离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴,担负着传力、减振和防止系统过载等十分重要的作用。在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,它的作用是使发动机与变速器之间能逐渐接合,从而保证汽车平稳起步;暂时切断发动机与变速器之间的联系,以便于换挡和减少换挡时的冲击;当汽车紧急制动时能起分离作用,防止变速器等传动系统过载,从而起到一定的保护作用。(示意图)随着汽车技术的进步和行驶速度的提高,对离合器制造厂家的技术水平和产品质量也提出了更高的要求。 用户是离合器制造企业,该企业的合作伙伴需要对一款离合器进行逆向设计、加工生产,但却只有离合器原型实物,没有相关数据和图纸。该离合器制造企业需要快速拿出离合器的三维数据方案。企业的常规做法是采用传统测量方式,如用卡尺、千分尺、三坐标、轮廓仪、影像仪等设备,对离合器整体及拆卸的单个零件分别进行测量,然后根据测量数据做出三维模型,向用户展示。这个过程大致需要一周甚至更长的时间,可谓耗时费力。(示意图)来自海克斯康的解决方案:采用海克斯康RigelScan激光3D扫描仪,高效扫描离合器总成上零部件,获取精准三维数据,直接导入软件里进行立体装配,输出爆炸图视频,向用户进行直观演示。从扫描到输出爆炸运动图,整个过程只需半天时间。1. 扫描准备由于离合器各工件较薄(压盘、膜片弹簧、离合器盖、传动钢片的边缘厚度分别为6mm、2.5mm、4mm、1.5mm),需借用桌面标志点将工件两端标志点识别,再进行标准模式扫描。(示意图) 2. 参数设置针对本次离合器扫描需要,设置分辨率为0.3mm。3. 扫描及软件装配使用RigelScan分别扫描离合器总成上拆卸的4个零部件,大约1小时即完成了整个扫描过程,得到了4个零部件的三维模型。将扫描数据导入软件进行位置装配,并按照装配顺序制作爆炸图。爆炸图运动视频演示▲用户成效海克斯康方案对比常规方案,其效率之高,令用户十分赞叹!速度再加上形象直观的产品装配展示,对于用户来说帮助很大。同时,可以继续利用扫描数据进行精细化测量及逆向设计。后期还可以指导加工,对制造出的离合器产品进行质量检测等。可以说,海克斯康RigelScan三维扫描仪与软件的结合,从开始贯穿产品的全生命周期,帮助用户极大地提高效率,减轻工作强度,节约时间和人力物力成本,为企业带来效益。客户简介:某汽车离合器制造企业

  FLIR ONE Pro作为配合智能手机使用的专业级红外热像仪广泛应用在电气、暖通、汽车等行业今天小菲就来给大家说一个汽修师傅使用FLIR ONE Pro查找汽车设备中难以察觉的小故障案例!汽车空调外循环效果差本次案例是一辆2011款菲亚特博悦车,搭载1.4T发动机,累计行驶里程约为14.5万km。据车主反映,该车空调内循环制冷正常,但外循环制冷效果差。接车后测试发现外循环模式时的出风温度约为15℃,且无法降低,制冷效果差。切换至内循环模式,出风口温度逐渐降低,且能降低至3.4℃,制冷效果恢复正常。再切换至外循环模式,出风口温度逐渐升高至15℃左右。分析认为,正常情况下,内外循环相互切换时,只有内外循环控制风门动作,改变的只是进风方式,此时温度控制风门并不工作,可能是进风温度差别过大或空调风门控制混乱?为验证猜想,决定首先检查外循环模式时的进风温度。用FLIR红外热成像仪测量风窗玻璃下方,两侧车外进风口的进风温度,发现发动机室内的热量与驾驶人侧车外进风口处的热量相通,由此推断发动机室内的热空气被左侧车外进风口吸入了车内,使空调蒸发器处的热负荷过大,以致空调制冷效果差。车外进风口的温度状况根据温度异常处,找到故障原因打开发动机室盖,检查两侧车外进风口,对比发现左侧车外进风口附近的发动机室盖密封条破损,缺失了一部分,由此可知发动机室内的热空气是通过此处的缺口经由左侧车外进风口被吸入车内的。右侧车外进风口左侧车外进风口更换发动机室盖密封条后试车,空调外循环模式时的制冷效果恢复正常,故障排除。更换发动机室盖密封条FLIR ONE Pro:让故障检测更简单 汽车空调制冷出现问题,一般人很容易觉得是空调零部件出现问题,幸好通过FLIR ONE Pro,发现左侧车外进风口处的温度异常,及时更换发动机室盖密封条,避免造成更大的损失!FLIR ONE Pro手机红外热像仪小巧轻便,配合智能手机即插即用,非常方便!它能够测量介于-20°至400°C之间的温度,热灵敏度可检测到70mk的温差,支持最多3个点温仪和最多6个温度区域。FLIR ONE Pro的热分辨率高达19200,其采用VividIR图像处理技术,使您能够看到更多重要细节,因此可广泛应用在我们的日常工作生活中,比如检查电气面板、查找暖通空调故障、检测房屋水损问题等。

  随着人类能源消耗类型的更新迭代,作为日常能源消耗的最典型代表,汽车的能源消耗正由化石能源向新能源转换。在日益追求车体轻量化,低能耗的同时,车辆的安全性与能源的优化利用成为近年来各国研发的重点。AMETEK力学测试产品线提供丰富的汽车行业检测项目,以超高的仪器精度和定制化的解决方案为汽车行业提供有力的科研和质控数据保障。汽车材料物理强度测试无论是传统的石化能源汽车,还是新能源汽车,车体材料是构成一辆汽车的基础。AMETEK LLOYD提供种类丰富的车体材料测试解决方案,主要包括A柱材料拉伸试验,底盘材料拉伸强度,车用涂层拉力、摩擦系数测试,车窗玻璃摩擦力、滑动力测试,车门拉开/闭合力,管路装配力,车用按键力,脚刹、油门、离合器执行力测试,车用密封件拉压强度测试,剪切力测试,钥匙插入力,扭转力测试等项目。在追求安全性的同时,大量的人体工程力学测试项目可以保障车辆的使用更加舒适。同时,车辆电子电器原件的物性检测,可有效的模拟原件在不同工况下的受力情况,有效的分析可以保障车辆在多环境下可靠的执行电器指令,为安全的实现智能化提供有利的支持。新能源汽车电池测试对于新能源汽车的核心,新能源电池和电池材料的性能和质量检测至关重要。AMETEK LLOYD提供一系列新能源电池检测方案,主要包括锂离子电池隔膜、铝塑膜拉伸、穿刺测试,摩擦系数测试,锂离子电池抗弯,抗压强度测试,定厚测压,定压测厚测试,锂电池强制内短路测试等。LLOYD锂电测试解决方案服务于各大电池企业多年,具有丰富的新能源测试经验,有效的协助电池厂和车企在电池的安全性科研与质控上更进一步。汽车传动件硬度测试作为车辆传动的核心,车轴,齿轮,齿条,轴承,曲轴等大量应用于各类汽车。车用传动件往往需要在高载荷、高热和高摩擦下服役多年,所以元件硬度的测试至关重要。AMETEK Newage硬度计提供金属硬度的快速测试解决方案,在保证高精度的同时可以近百倍的提升测试效率,扩大检测量,高效的为车辆原件供应商提供硬度数据。展会信息

  2018年8月27日-8月29日由中国内燃机工业协会换热器分会、中国汽车工业协会车用散热器委员会、中国汽车工业协会汽车空调委员会、中国内燃机工业协会冷却水泵机油泵分会主办的“2018年汽车及内燃机热管理技术交流大会”在天津社会山国际会议中心酒店举办。深圳万测试验设备有限公司作为中国内燃机工业协会换热器分会会员企业受邀参加。 万测集团是一家流体压力检测和力学性能测试解决技术方案提供商,集研发、设计、制造、销售、服务为一体的国家级高新技术企业。致力于汽车零部件、空调、换热器、航空航天、国防军工、工程机械等领域的流体测试和控制技术。拥有国际领先ptm系列油系脉冲试验机、水系脉冲试验机、气体脉冲试验机;btm系列高低压耐压爆破试验机、高低温耐压爆破试验机、高低压水压试验机;ltm系列气密性试验机、水检气密试验机、产线气密性试验机;vtm系列真空试验机;vem系列体积膨胀试验机;拉力试验机、摆锤冲击试验机、落锤冲击试验机、液压试验机、疲劳试验机、冷热循环试验机、内部腐蚀试验机和非标流体试验机等检测设备。 我们的解决方案和产品服务主要应用于客户汽车管、塑料管、尼龙管、合金管、航空管、复合管、换热器、蒸发器、冷凝器、散热器、中冷器、油冷器、暖风芯体、水箱、油箱、滤清器等产品测试。主要客户有比亚迪汽车、江淮汽车、长安汽车、南京汽车、野马汽车、中汽检测、华测检测、谱尼测试集团、瀚海检测、sgs检测、伟世通、翰昂汽车零部件、邦迪集团、清华大学苏州汽研院、南汽研究院、宁波天普、重庆溯联、川环科技、浙江银轮机械、上海银轮热交换器、陕西科隆能源、陕西泰德汽车空调、中科院、中国空空导弹研究院、中煤科工集团、中国船舶工业、中航工业沈阳兴华航空、宝山钢铁股份有限公司等等。 我们将根据客户的实际需求,一如既往的提供具有深度、广度的产品和综合解决方案,成为您可信赖的首选合作伙伴。

  本报讯 (记者 李星婷)在汽车零部件试验检测这项关键技术上,由我巿(重庆)高校研发出的技术和装备将在全国的汽车生产企业和科研院所得到大规模的推广和应用。这是4月12日记者在高交会重庆理工大学展区了解到的信息。据了解,在汽车制造行业,汽车及零部件检测是核心技术,其研发过程中需要进行大量的实验检验。长期以来,我国汽车零部件检测技术和装备大多从国外引进,成本很高,这也成为制约企业发展的一道门槛。由重庆理工大学依托教育部在该校设立的汽车零部件制造及检测技术重点实验室,在国内率先提出将数字信号处理技术应用于预测和评价离合器磨合状态等方法,并研发出汽车动力传动系统系列试验技术,可为汽车制造企业零部件研发提供技术测试平台。由于该技术已迖到国际一流水平且成本远低于国外产品,去年该技术获得由中国汽车工业协会颁发的科技进步一等奖。&ldquo 目前学校已和奇瑞汽车有限公司等国内多家汽车生产企业和科研院所签订成果转化合作协议。今年下半年,学校还将和清华大学苏州汽车研究院共同成立股份公司,在全国进一步推广应用该项技术成果。&rdquo 重庆理工大学副校长许洪斌介绍,预计该技术的应用,将在两年之后为全国汽车零部件检测行业带来近2亿元的年产值。

  &ldquo 氢&rdquo 松解决检测烦恼英福康新一代氢气泄漏检测技术助力汽车业提高生产效率全球汽车行业更新换代速度不断加快,竞争愈发激烈。为了抓住市场脉搏,满足业界客户越来越严格的要求,无论汽车整车制造商还是零部件供应商都在不断对自身进行调整,最大限度提高生产效率。而如何在生产速度快速提高的同时,有效保证产品质量,成为各大厂商急需解决的棘手问题。在质量检测工序中,汽车零部件气密性的检测是众所周知的难点,排除故障所需的时间也较长。为了帮助汽车行业解决这个难题,英福康长期致力于开发新一代泄漏检测技术。如今,氢检测技术经过多年的发展已完善成熟。采用氢气泄漏技术可在提高生产效率的同时,及时有效地检测出气密性不达标的瑕疵品,因而备受华晨宝马等国际整车品牌的青睐。氢气作为检测气体氢气,更准确的说是一种由5%的氢气(H2)和95%的氮气(N2)组成的合成气体,是氢检测技术中的主角。这种合成气体不仅无毒、不易燃烧,而且成分稳定,很难与其它材料表面的惰性气体发生化学反应。在焊接等工序中,它能够有效防止金属表层氧化,通常被作为保护气体使用,并且符合国际ISO10156:2010标准。由于它生产简易、价格低廉(1000升只需机几欧元)、运输和储存方便,在工业上的使用非常广泛。此外,决定它成为检测气体的最重要原因是:氢分子在的大气中含量微乎其微。通常,在一千万个大气分子中,能找到的氢原子大约只有5个,相当于0.5ppm。这意味着如采用氢气作为检测气体,一旦零部件存在漏孔,检测仪就可快速检测出氢分子数量的大幅度增加。正因如此,氢气取代了很多传统检测介质,越来越广泛地在工业界被作为检测气体使用。氢检测技术在汽车行业中的价值传统汽车零部件气密性检测方法有很多种,比如在水槽中水检以及使用喷雾剂检测等方法。和这些传统方法比较,氢气检漏技术的优势显而易见。由于传统检漏方法通常采用液体为检测介质,这就使得零部件在检测后,不得不再经过一道烘干工序。而为了防止表层腐蚀,很多装有敏感电子元件的关键性零部件,比如变速箱,根本不允许和液体发生接触。压低时间成本传统检漏方法不仅工序复杂,也非常耗时。比如在汽车引擎的泄漏测试中,通过水检的方法检测员可以快速检测到一个轻微的5 x 10-2 mbar l/s的泄漏率,但是要找到漏孔的确切所在,则需要耗费多达几个小时的时间。检测的难度是由汽车引擎内部复杂的结构造成的,如果泄漏点在连接部位或狭窄的角落里,它将很难被检测出来。另外,由于水的表面张力,小气泡通常无法形成,导致较小的漏孔很难被发现。如此一来,作为一项纯粹的需要眼力的工作,检测结果完全取决于检测员的经验和关注度。由于生产线不能因为瑕疵品暂停运行,所以一旦检测出泄漏率,工人们就必须把泄漏的发动机搬运到下游的工作站进行漏孔定位检测。这样既需要人工,也浪费时间,对厂家而言,成本将大大增加。使用氢气泄漏检测方法,漏孔通常只需几分钟就能被准确定位。算下来,它比传统方法的速度快了平均10倍左右,能够很快的收回投资成本。MAN集团GE发动机部门的工厂设备组装规划师Peter Tripp先生表示:&ldquo 氢检测法帮助我们节省了五到十倍的时间,使我们的生产效率得到显著提高。过去我们得花费几个小时才找到漏孔,有时甚至无法准确定位漏孔的位置。而现在通过氢气检漏技术,我们只需要10到20分钟就能完成一台发动机的泄漏检测和定位。&rdquo 操作简易氢检漏技术的实际运用非常简易。检测员只需将组合气体增压导入测试部件内部,然后通过敏感度高的氢传感器探头在部件表面几厘米处进行检测。一旦出现泄漏情况,氢传感器就会检测出氢分子含量超标,并且发出视听信号警告检测员。氢检测技术不仅能定位漏孔的位置,检测仪器还可以根据氢分子含量的多少,确认漏孔的的大小。稳定的混合气体也不会和被检测的零部件发生化学反应,杜绝表面腐蚀现象的发生。泄漏率量化的重要性氢检测能够根据泄漏率的多少来确定漏孔的大小,这一功能给汽车零部件的检测带来了诸多便利。在检测零部件标准泄漏率已知的情况下,通过量化实际泄漏率,能够判断出泄漏是属于由设计和技术条件导致的正常泄漏,还是属于不合规格的非常规泄漏。通过对泄漏的量化功能,氢检验技术能直接检测出不合格产品,从而加快返工的时间。氢检测与其他检测方法的关键区别决定一个泄漏检测仪器是否成功的关键是传感器的质量和灵敏度。如英福康在Sensistor ISH2000检测仪上采用的先进传感器和创新的软件,就让氢传感器具备了高效选择和快速的准备时间。高效选择功能保证了检漏结果不会受到检测气体以外含氢化合物的影响,例如在工厂车间里通常使用的润滑剂,溶剂等。快速的准备时间是指氢传感器检测到漏孔报警之后,传感器使氢饱和归零所需要的时间。只有在归零之后,传感器才能继续检测。所以说,归零时间越迅速,等待时间越短。集成、坚固的设计,灵活简易的操作和近乎零维修的质量,都是组成氢检测优势的不可或缺的因素。低投资成本+低运营成本=成本高效在实际的工业应用中的氢泄漏检测可以灵活使用在包括燃油和排气系统中的储罐、管道和阀门,机油系统和汽缸的冷却系统,以及变速箱和离合器等各种汽车零部件上。使用氢泄漏检测能够让对厂家在后期加工线(如干燥箱等)的昂贵的投资和运营成本成为过去。此外,检测结果质量的提高也对生产带来了非常积极影响。次品、投诉和保修索赔的现象显著减少,也大大降低了相应的管理成本。来自Grammer AG的Georg Strecker先生是一名质量规划师,他表示:&ldquo 氢泄漏检测设备的使用是一个巨大的成功。我们已经朝着我们交货&lsquo 零瑕疵&rsquo 的方向迈进了一大步。氢检测技术也让我们客户满意程度达到了一个新的高度,并且大幅度的减少了索赔费用。&rdquo 展望批量泄漏测试在生产线集成泄漏检测中,现今最常用的方法仍然是压力衰减发(或压降法检测)。检测出的瑕疵部件将被调出并返工。但这种方法通常不够准确。因此,根据不同生产线的的要求,有两种自动化的选配方案,来提高效率,展示测试结果的可再现性。如果厂家只需要检测出零部件是否气密,那么他可以选择在累积室里使用的集成气体测试。这种方法可以在不影响测试结果再现性的情况下,实现对温度高而表面潮湿的零部件进行检测,而采用压力衰减法必须将零部件进行降温和干燥处理。而如果厂家对确定漏孔位置和泄漏性质有要求,那么他应当选择结合了泄漏检测和漏孔定位两个工艺步骤的全自动化泄漏检测系统。行业领军品牌INFICON为汽车行业提供带有氢传感器探头的机器人手臂,通过模式编程对零部件进行全自动检测。氢检测法的种种优点,加上全自动的解决方案,缩短了装配和检测时间,从而进一步提高工作效率。 AP57 w 发动机 英福康产品可用于多处汽车零部件的检测 ISH2000 w 检测仪关于英福康英福康(INFICON)是世界领先的检漏仪器仪表的开发商,制造商与供应商。其检漏仪被广泛应用于生产和质量监控中有较高难度的工业流程中。英福康的主要客户有制冷和空调设备的制造商与服务商,汽车制造商和汽车零部件供应商,半导体行业以及检漏系统集成商。全球几乎所有重要的汽车制造商及零部件供应商是英福康的客户,其中包括安全气囊、空调及元件、油箱、喷油器系统、各种流体容器生产商等。作为英福康控股(总部位于瑞士)的一个分支,检漏业务部门使用了英福康控股的其他下属业务部门的产品,如质谱仪和线年,英福康 &ldquo 智慧科技(Wise Technology)&rdquo 专利的应用,为示踪气体检漏技术带来了革命性的创新。在2011年,英福康收购了Pfeiffer Vacuum(前身为Sensistor的下属部门)公司的氢泄漏检测技术。英福康在检漏领域拥有50多年的经验。它通过在科隆(德国),查斯(列支敦士登),林雪平(瑞典),雪城(美国)和上海(中国)地区的生产据点,在重要工业国家的销售办事处,以及与销售伙伴组成的广泛销售网络来进行产品的全球销售管理和支持。在2011年,在全球范围内,英福康实现了3.15亿美元的收益,拥有员工约950名。INFICON在 SIX 瑞士交易所上市,代号为IFCN。英福康在中国英福康(中国)是英福康集团在中国的全资分公司,于2006年在中国上海投资设立了制造工厂,并在北京、上海、广州、香港分别设有销售办事处。英福康在中国同步提供集团所有系列的创新产品,并响应中国客户的生产要求,确保为综合性的销售、培训、应用支持和维修服务提供本地化的支持。截至2012年年中,英福康在中国的员工人数超出 100人。英福康在中国发展迅猛,并计划伴随中国市场的不断发展进一步扩大。了解更多关于英福康的信息,请浏览:

  根据行业标准制修订计划,我部组织全国汽车标准化技术委员会、有关制造企业、科研机构和高校等单位,完成了《散装水泥车技术条件及性能试验方法》等20项汽车行业标准的制修订工作(标准名称及主要内容见附件)。在以上标准批准公布前,为进一步听取社会各界意见,特予以公示,截止日期2010年6月10日。联 系 人:盛喜军电 话电子邮件:件:20项汽车行业标准名称及主要内容序号标准编号标准名称标准主要内容代替标准采标情况 1 QC/T 560-2010散装水泥车技术条件及性能试验方法标准规定了散装水泥车的术语和定义,要求,试验条件,试验方法,检验规则,标志,使用说明书和随车文件,包装,运输,贮存。本标准适用于采用定型汽车底盘改装的散装水泥车,以及由牵引车拖挂的散装水泥半挂车。QC/T 560-1999QC/T 561-1999 2 QC/T 223-2010自卸汽车试验方法标准规定了自卸汽车的试验方法。本标准适用于按QC/T 222的规定制造的自卸汽车的试验方法。其它类型的具有自卸功能的机动车参照执行。QC/T 223-1997 3 QC/T 825-2010自卸汽车液压系统技术条件标准规定了自卸汽车液压系统的要求、检验规则、标志、使用说明书、随机文件、包装、运输和贮存。本标准适用于自卸汽车的液压系统,其它专用汽车液压系统参照执行。 4 QC/T 460-2010自卸汽车液压缸技术条件标准规定了自卸汽车液压缸产品型号的编制方法、基本要求、性能要求、试验方法、检验规则及产品标牌、使用说明书、附件、包装、运输和贮存。本标准适用于以液压油为工作介质的自卸汽车举升系统用单作用活塞式液压缸、双作用单活塞杆液压缸、单作用柱塞式液压缸、单作用伸缩式套筒液压缸、末级双作用伸缩式套筒液压缸。QC/T 460-1999 5 QC/T 222-2010自卸汽车通用技术条件标准规定了自卸汽车的要求、检验规则、标志、使用说明书、随车文件、运输、贮存及质量保证。本标准适用于定型汽车二类底盘、以液压倾卸的自卸汽车(包括后卸自卸汽车、侧卸自卸汽车和三面自卸汽车)。其它类型的具有自卸功能的机动车参照执行。QC/T 222-1997 6 QC/T 826-2010桥梁检测车标准规定了桥梁检测车的术语和定义、基本规格、要求、试验方法、检验规则、标志、使用说明书、随车文件、运输和贮存等。本标准适用于采用已定型汽车底盘改装的折叠式、桁架式、混合式桥梁检测车。其它型式和有特殊要求的桥梁检测车可参照本标准执行。 7 QC/T 667-2010混凝土搅拌运输车技术条件和试验方法标准规定了混凝土搅拌运输车的术语和定义、要求、试验方法、检验规则、标志、使用说明书及随车文件、运输、贮存。本标准适用于斜筒式混凝土搅拌运输车(后端卸料式),以及由牵引车拖挂的斜筒式混凝土搅拌运输半挂车(后端卸料式)。QC/T 667-2000QC/T 668-2000 8 QC/T 827-2010通信车标准规定了通信车的定义、要求、试验方法、检验规则、标志、使用说明书、随车文件、运输及贮存。本标准适用于采用已定型汽车二类底盘或整车改装的通信车,其他类型的通信车参照执行。 9 QC/T 449-2010保温车、冷藏车技术条件及试验方法标准规定了保温车、冷藏车的技术要求、试验方法、检验规则、标志、使用说明书、随车文件、运输、贮存。本标准适用于采用定型汽车底盘改装的保温车、冷藏车和保温半挂车、冷藏半挂车,其它型式的保温车、冷藏车亦可参照执行。QC/T 449-2000QC/T 450-2000参考ECE/TRANS/165、JIS D 4001-1995 10 QC/T 828-2010汽车空-空中冷器技术条件标准规定了汽车空-空中冷器总成的技术要求、试验方法、检验规则、标志、包装、运输及贮存。本标准适用于汽车空-空中冷器 11 QC/T 468-2010汽车散热器标准规定了汽车散热器总成技术要求、试验方法及检验规则、包装、标志、运输与贮存等。本标准适用于汽车散热器。QC/T 468-1999 12 QC/T 829-2010柴油车排气后处理装置试验方法标准规定了柴油车排气后处理装置的术语和定义、试验条件和试验方法。本标准适用于柴油车排气后处理装置,包括氧化型催化转化器(DOC)、颗粒过滤器(DPF)、选择性催化还原装置(SCR)。由以上基本后处理装置单元衍生组合的系统参照本标准执行。 13 QC/T 830-2010汽车高压气体放电灯用电子镇流器标准规定了汽车高压气体放电灯用电子镇流器的要求,试验方法,检验规则,标志,包装,运输及贮存。本标准适用于各类汽车高压气体放电灯用电子镇流器。 14 QC/T 831-2010乘用车座椅用电动滑轨技术条件标准规定了乘用车座椅用电动滑轨的技术要求、试验方法、检验规则及标志、包装、运输及储存要求。本标准适用于M1类车辆的座椅用电动滑轨, M2和M3类车辆的座椅用电动滑轨可参照执行。 15 QC/T 832-2010水暖式汽车尾气加热器标准规定了汽车水暖式汽车尾气加热器的技术要求、试验方法、检验规则和标志、包装、运输和储存要求。本标准适用于汽车水暖式汽车尾气加热器。 16 QC/T 666-2010汽车空调(HFC-134a)用密封件 第1部分 O形橡胶密封圈本部分规定了使用制冷剂(HFC-134a)的汽车空调用O形橡胶密封圈(以下简称O形圈)的技术要求、试验方法和检验规则、标志、包装、运输和储存。本标准适用于汽车空调管路系统和压缩机系统用橡胶O形圈。QC/T 666-2000 17 QC/T 833-2010汽车空调用压力安全阀技术条件标准规定了汽车空调用压力安全阀的要求,试验方法,验收规则,标志,包装,储存和运输。本标准适用于HFC-134a制冷剂的汽车空调系统。 18 QC/T 834-2010汽车空调斜板式变排量压缩机总成技术条件标准规定了汽车空调斜板式变排量压缩机的要求,试验方法,检验规则,标志,包装,储存和运输。本标准适用于使用HFC-134a制冷剂的汽车空调斜板式变排量,最大排量≤200cm3/r的压缩机。 19 QC/T 835-2010汽车空调用双向斜板式定排量压缩机总成技术条件标准规定了所有定排量双向斜板式汽车空调压缩机总成的要求,试验方法,检验规则,标志,包装,储存和运输。本标准适用于压缩机排量≤200cm3/r,采用HFC-134a制冷剂的双向斜板式定排量压缩机总成。 20 QC/T 836-2010专用汽车类别及代码本标准根据专用汽车的结构和技术特性,规定了专用汽车的类别和代码。本标准适用于GB/T 3730.1-2001中2.1.1.11和2.1.2.1.8条和GB/T 17350-2010规定的车辆。

  20 世纪70 年代的发生的石油危机,推动了国外汽车轻量化材料技术的发展。发达国家在研究如何解决能源短缺和环境恶化的过程中,制定了一些非常严格的强制性法律和制度,目的是为了降低车辆的燃油消耗,减少汽车的尾气排放。因此,汽车厂商为了满足政策法规的要求,投入了大量的人力及物力用于研发节能环保、轻量化、可回收的材料。此外,各国政府为企业、大学以及研究机构提供了大量的资金支持,用于研发汽车轻量化材料,从而进一步促进了汽车轻量化的发展。目前,我国汽车材料产业已经初具规模,大量自主研发的新材料以及新技术已经成功实现商业化。一、车用高强度钢材料及其技术发展趋势为了在与其他种类竞争中保持优势地位,扩大高强度钢材料在汽车上的应用范围,巩固高强度钢在汽车用材中的主导地位,未来高强度钢的技术开发将紧密围绕汽车工业降低成本、减轻车辆自重的要求来展开。研究重点内容包括:1.新一代先进高强度钢(板、管材)的开发目前的高强度钢(比如双相钢、低合金高强度钢、TRP 钢和复相钢)的强度均在400~1200MPa 左右。而通过对化学成分的优化设计以及对冶炼技术的改进,可以减少或取消贵重合金元素的用量,开发出强度更高,且其他性能(塑性、韧性、成形性)优良的高强度钢。比如,高成形性的品种、高弹性模量的品种和成形后强化非烘烤硬化新品种等。2.先进的成形技术研发目前高强度钢的成形工艺主要有深冲、延展、拉伸翻边、弯曲等,由于这些工艺本身的局限性,先进成形技术的研发显得十分迫切。未来成形技术研发方向主要有:管件液压成形、板件液压成形、辊压成形、电磁成形与气体热成形等 此外先进高强度钢的焊接高强度钢与其他合金连接的激光拼焊技术以及开发新的连接技术,也是未来研发的重点。3.成形过程的CAE 分析高强度钢在汽车工业中的应用遇到的难题是“成形”。由于强度的升高,必然造成成形困难且成形后可能发生开裂和回弹,用计算机进行成形的CAE 分析,对成形过程的变形路径进行优化,以保证成形而避免开裂 对回弹进行模拟分析,预测回弹,进而进行回弹补偿,可大大提高和改善高强度钢的成形性,从而大大节约模具调试时间和修模工作量。4.进一步研发超细晶粒钢超细晶粒钢是一种新的高强度钢板材料。这样的钢材料的主要经济指标得到了进一步提高,与现有的钢材相比较而言,其强度和韧性均超过了现有钢材的一倍以上。新型超细晶粒钢主要类型分为400MPa 级和800MPa级,具备了高均匀度、超细晶粒以及高洁净度等三大主要特征。二、铝合金材料的应用进展最近几年来,全球性的能源和环境问题愈发严峻,面对这样的形势,很多汽车制造商就要在降低车辆自重和降低燃油消耗方面加大投入和研发力度,降低因为汽车生产过程多带来的环境损害后果。在材料属性方面,铝硅合金多具有共晶和亚共晶结构,也有一部分的汽车零件仍然会使用传统的过共晶铝硅合金,但是这种材料的铸造性能和机加工性能不够优越,近些年来多采用的是低硅或中硅亚共晶铝硅合金材料。再者不同用途的汽车零部件,所采用的铝合金材料特点也存在差异。铝铸造产品多应用于转向机构和制动器零部件中,铝铸造零部件可以承受大于10MPa 以上的压力,其耐腐蚀性和强度也较高,要不断研究开发出力学性能高、耐腐蚀强度高的铝合金材料。研发具有良好铸造性能的Al-Cu 系耐热铝合金以满足制动器耐热要求;研发具有良好耐磨性的Al-Si-Fe-Mn-Cr 合金以满足自动变速箱离合器零件、冷气压缩机汽缸、换挡拨叉件的要求。此外,应用于车体与悬挂系统的部件,除了具备高强度外,还要求开发具备能量吸收与良好的变形特性,Al-Si-Mg 系非热处理型高强高韧性铝合金是未来研发方向之一。三、镁合金材料的应用进展镁及镁合金材料是一种较为理想的汽车轻量化材料,但存在一些必须解决的问题,如材料性能随着温度升高而降低问题和腐蚀问题等。因此需要进一步研究开发新的镁合金材料及其成形制造技术。镁合金材料的成形方法分为铸造加工成形和塑性成形,当前主要运用的是铸造成形方法,且压铸方法是镁合金铸造成形方法中应用最广泛的。最近发展起来的镁合金压铸新技术包括充氧压铸和真空压铸,充氧压铸在生产汽车镁合金零部件上的应用较广泛,线B 镁合金汽车方向盘和轮毂。镁合金成形以铸造工艺为主,但铸件的缺陷限制了镁合金性能的提高,局限了镁合金的广泛应用。镁合金使用塑性成形方法,可有效地消减铸件缺陷的影响,通常采用热处理强化和形变强化可明显地提高合金的性能,但由于镁的密排六方结构,变形难度比钢、铝和铜等要大。如果直接运用铝合金已有的塑性成形方法,往往会使得镁合金材料的成品率很低,使塑性加工成形成本过高,影响了镁合金在各领域的应用。因此,加快发展镁合金塑性成形方法也是研究的热点和发展的趋势。四、碳纤维增强树脂基复合材料应用碳纤维增强聚合物基复合材料( Carbon Fiber Reinforced Polymers,CFRP) 具 有独特的性能优势,是汽车新材料领域备受关注。相较于其他汽车材料而言其优势有以下几个方面:1.力学性能优异汽车上使用的碳纤维增强树脂基复合材料密度仅为1.5~2.0g/cm3,只达到普通碳钢密度的20~25%,质量是同体积铝合金的约2/3,但是碳纤维复合材料的综合力学性能要高于传统的金属材料,抗拉强度达到了钢材的3~4 倍。CFRP 的疲劳强度是抗拉强度占比达到70%~80%。另外,CFRP 的振动阻尼特性也要优于轻金属,例如通常轻合金发生震动后需要9s 震动才能停止,而CFRP 振动2s便可以停止。2.一体化制造汽车结构发展的另外一种趋势就是模块化与整体化。采用复合材料能够在其成型过程中制成形状各异的曲面,能够完成汽车零部件的一体化制造。采用一体化成型制造一方面可以大幅度减少汽车零部件数量和零部件之间的连接工序,另一方面也使得零件的生产周期大幅缩短。3.吸能抗冲击性强CFRP 具有的粘弹性也相当出色,同时碳纤维和基体之间会因为局部的微小摩擦而产生界面应力。在粘弹性与界面摩擦力共同作用下,CFRP 汽车制件能够表现出优越的吸能抗冲击能力。再者,经过特殊制作的碳纤维复合材料,其具有的碰撞吸能结构可以在剧烈碰撞状态下碎裂成很小的碎片,使得撞击能量得以最大化的分散,这种材料的能量吸收能高出普通金属材料的5 倍左右,极大提升了汽车的安全性,保障乘车人员的生命安全。4.耐腐蚀性好碳纤维丝束和树脂材料共同组成了碳纤维增强聚合物基复合材料,其耐酸碱性能也较为优异,用其制造的汽车零部件无需进行表面防腐处理,其耐候性及耐老化性极好,寿命是普通钢材的约2 ~3 倍。五、结语汽车轻量化是实现节能、减排的重要技术措施之一。世界铝业协会的报告指出,汽车自重每减轻10%,燃油消耗可降低6%~8%。因此,汽车轻量化对于节约能源、减少排放、实现可持续发展战略具有十分积极的意义。高强钢、铝合金、镁合金和天然纤维增强聚合物生态复合材料是当前轻量化、节能环保、可回收汽车新材料的重要组成。轻量、节能、环保和可回收将成为国内外汽车工业发展的重要方向。参考文献:[1]范子杰,桂良进,苏瑞意.汽车轻量化技术的研究与进展[J].汽车安全与节能学报,2014(01):1-16.[2]陈晓斌,韩英淳,,等.板料材质及厚度对车身结构性能及轻量化的影响[J].吉林大学学报(工学版),2010,40(增刊).[3]高阳. 汽车轻量化技术方案及应用实例[J].汽车工程学报,2018,8(001):1-9.[4]彭孟娜,马建伟.碳纤维及其在汽车轻量化中的应用[J].合成纤维工业,2018,041(001):53-57.[5]付彭怀,彭立明,丁文江.汽车轻量化技术:铝/镁合金及其成型技术发展动态[J].中国工程科学,2018,20(001):84-90.

  新能源对汽车安全性的影响第七届中国(广州)汽车零部件论坛成功举办2014年11月20日,由国家汽车及零部件(广州)出口基地技术服务平台主办,中国电器科学研究院有限公司、威凯检测技术有限公司联合承办的&ldquo 第七届中国(广州)汽车零部件论坛&mdash Hi Tech 对汽车安全性的影响&rdquo 在广州拉开帷幕。广东省商务厅、广州市对外贸易经济合作局诸位领导、中国电器科学研究院有限公司陈伟升副总经理、薛守仁副总工程师、威凯检测技术有限公司谢浩江总经理、杨春荣副总经理,以及包括广汽本田、东风日产、广汽乘用车、广汽研究院、福迪汽车、广汽零部件、德赛西威、华为终端、马瑞利、铁将军、索哥波等整车和零部件企业,广东省汽车行业协会、广州市汽车行业协会、深圳市汽车电子行业协会、中山大学、华南理工大学等协会与高校共计200多人参加了会议。随着&ldquo 智能&rdquo 、&ldquo 互联&rdquo 、环保&rdquo 等概念的推出,高科技加快了植入汽车的脚步,这对汽车的安全性、可靠性是一个极大的挑战。会上业内专家从&ldquo Hi Tech 对汽车安全性的影响&rdquo 的角度出发,与参会代表共同分享了汽车领域的前沿技术、发展趋势与质量保证最新要求。丰富的主题和专家们高水平的阐释,引发了企业代表的深入讨论和热烈交流。今年下半年将迎来汽车市场高峰期据广东省汽车行业协会秘书长罗兴安介绍,今年1-9月份,全省汽车生产156.49万辆,同比增长10.48%,出口持续低于去年同期水平,1-9月累计出口35051辆,同比下降4.99%。但罗秘书长同时表示,今年10月份到明年1月份是乘用车持续时间最长的市场高峰期,预计全年将完成汽车产销量230万,将高于去年同期水平。其中,在新能源汽车领域方面,广东省已经建立起包括从整车到零部件,涵盖了所有电动汽车品种的完整产业链以及相应的充换电设施、重点实验室、检测试验机构以及标准化委员会,关键技术有了重大突破。中国汽车技术、汽车电商发展趋势当前汽车技术的发展,新能源汽车和车联网技术的普及和应用是两大发展趋势。全国汽车标准化技术委员会电动车辆分会秘书长周荣先生判断,21世纪将是公路交通智能化的世纪,未来,汽车将通过智能交通系统(ITS)实现互联互通、综合管理,车辆靠自己的智能在道路上自由行使,公路靠自身的智能将交通流量调整到最佳状态,借助这个系统,管理人员可以对道路、车辆的行踪掌握得一清二楚。在新能源汽车关键技术领域,汽车空调系统、电动系统以及转向系统三者之间独立运行与汽车在节能及安全性之间的矛盾是目前制约新能源汽车发展的瓶颈,也已被国家列入重点需要解决的技术难题。华南理工大学李礼夫教授在会上提出电动汽车系统集成控制方法,通过集成控制三大耗电系统将有望实现汽车节能及提高汽车安全性的目标。广汽集团一直走在汽车技术发展的前端,本届论坛广汽集团汽车工程研究院首席专业总师黄少堂先生在其发表的&ldquo 车联网 VS 智能驾驶和智能电商&rdquo 的主题演讲中首次提出汽车集成电商的概念,他认为汽车是一个个性化的产品,如果通过电商将汽车零部件企业、整车企业、汽车保险、汽车后市场全部链接起来,线上定制、线下跟进,整合全产业链的商家,从而实现合理采购、阳光报价、检测透明、售后便捷,给用户一个价值打包,将会是汽车电商未来的发展之路。广东电动汽车质量保障体系日益完善广东新能源汽车发展一直走在全国前列,广东初步形成了较完善的新能源汽车生产体系,截止2014年10月份,广东累计推广新能源汽车超10000辆。产业的发展推动着广东电动汽车标准化工作的开展,广东省电动汽车标准化技术委员会秘书长王益群博士在会上介绍,到目前为止,广东已经编制了41项电动汽车地方标准,其中17项已经颁布,24项已经完成报批工作,还有35项预计将在2015年年底前完成。这些标准的制定和落实,将进一步推动电动汽车产业技术的发展。广东省已经明确将新能源汽车产业列为近期重点发展的三大战略性新兴产业之一,为推动电动汽车产业的发展,今年在广东省发改委的支持下,威凯检测技术有限公司(CVC威凯)建成了华南地区首个带运行工况的第三方整车EMC测试实验室。CVC威凯汽车事业部经理林青在会上指出,汽车零部件集成在一起,容易相互干扰,这个问题在新能源汽车上尤为凸显。国家标准GB14023 CISPR12已经强制要求整车必须进行EMC测试,以保证汽车的安全性能。本次整车EMC测试实验室的建成,将有利于解决了整车和零部件企业,尤其是广东及周边地区企业产品送检成本高的难题。广东东风日产乘用车技术中心系统开发部部长陈文进同时表示,目前市场上各充电器对GB/T的满足程度表现不一,各车企为推广电动车,保障用户充电安全,在与各充电机厂家进行对接联调工作中花费了巨大的人力物力,非车载交直流充电机产品进入强制性认证制度建设刻不容缓。他建议,未来可以由车厂和电网联合成立充电机产品强制性认证制度,从软件、硬件和管理三个层面上共同推动建设健康、良性、循环的新能源汽车局面。作为广州国际汽车展的重要组成部分,中国(广州)汽车零部件论坛已经成功举办了六届,已经发展成为华南乃至全国最有影响力的行业盛会之一。本届论坛,主办方除了继续保持往届&ldquo 汇多方力量,促广泛交流,切实提升汽车零部件质量水平&rdquo 的一贯原则外,还紧扣汽车及其零部件领域的趋势和热点,邀请高水平的嘉宾进行技术分享,通过思想的碰撞和头脑风暴,为与会代表和行业创造更大的价值。中国电器科学研究院有限公司和威凯检测技术有限公司将持续发挥作为国家汽车及零部件(广州)出口基地技术服务平台的作用和意义,继续为推动全国汽车及零部件行业的发展作出应有的贡献。

  汽车燃油箱综合测试系统平台 我公司于2001年就为德国KOTAS制造了一套奥迪C6燃油箱检漏设备生产线,由于采用了PLC和计算机智能化自动检测合格与不合格分选智能存储打印和气动控制得到了德方的好评。在日本检湿传感器,在日方工作人员不能及时到现场的情况下,我们解决了安装调试。因此,德方亲自来我公司考察两次,又定制了一套PQ35检漏生产线的合同,我方用两个月的时间完成并验收。对于此次与贵公司合作的项目,我方将借鉴为德国KOTAS制做设备的经验,并结合国内外相关产品的优点为贵公司做出合格满意的产品。一,系统构成及试验方案本系统有四个组成部分,可分别进行如下试验1, 汽车燃油箱油箱盖的密封性试验2, 燃油箱耐压试验,安全阀开启压力试验及燃油箱进气阀开启压力试验3, 塑料燃油箱角锤冲击试验4, 燃油箱密封性试验。该系统满足GB18296-2001和QC/T 644-2000标准中的相关要求。该系统为四个相对独立的试验平台。 试验平台一:该试验平台为燃油箱箱盖密封性试验台。技术要求参照QC/T 644-2000行业标准中4..6项,安全性能要求参照GB18296-2001国家标准中3.1项,试验方法参照QC/T 644-2000行业标准中5.4项和GB18296-2001国家标准中4.1项。油箱放到旋转台后装夹固定,在空载的情况下通过电动翻转台将油箱翻转180度,通过电机水平二维控制将漏杯定位在燃油箱箱盖下方。然后再将油箱翻转回位。通过流量控制装置装入额定量水后密封,油箱经通过PLC控制电机与减速器驱动操作平台翻转180度,将15秒稳定后一分钟内的漏液去皮称重。操作平台翻转回位,然后开封抽水松夹并将漏杯自动升起倒掉漏液。用户可通过计算机采集的漏液重量,打印试验结果,建议增加操作平台旋转时安全保护功能。 试验平台二:燃油箱耐压试验,安全阀开启压力试验及燃油箱进气阀开启压力试验台。燃油箱耐压试验的安全性能要求参照GB18296-2001国家标准中3.6,3.7,试验方法参照GB18296-2001国家标准中4.4,4.5项。燃油箱耐压试验分塑料油箱试验和金属油箱试验两种。塑料油箱耐压试验温度非常温。自动增压系统采用比例阀控制,注水采用流量控制装置控制注入额定容量。后俩项试验温度为常温。安全阀开启压力试验安全性能要求参照GB18296-2001国家标准中3.1项和3.4项,试验方法参照GB18296-2001国家标准中4.2项。进气阀开启压力试验技术要求参照QC/T 644-2000行业标准中4.8项,试验方法参照QC/T 644-2000行业标准中5.6项中。自动增压系统采用比例阀控制,注水采用流量控制装置控制注入额定容量,抽水时采用流量可控抽水装置。整个试验台可移动,试验配套外设随用随取。 试验平台三:塑料燃油箱角锤冲击试验台。本试验试验方法参照GB18296-2001国家标准z中4.6项。在油箱中加入额定液体后装夹,通过15KG重的三角形云锤,用30J冲击能量冲击易损伤部位;自动调整角锤高度,使角锤在20J~50J的范围内可调。整个装夹平台可垂直升降水平翻转,摆锤位置可水平调整。摆锤位置控制可分手动和自动两种。油箱内介质可过滤回收。注水采用流量控制装置控制注入额定容量。整个试验台可移动,试验配套外设随用随取。 试验平台四:燃油箱密封性试验台。具体技术要求参照QC/T 644-2000行业标准中4.5项中相关内容。试验方法参照QC/T 644-2000行业标准中5.3项。整个系统采用PLC控制,水下测漏箱采用高亮度照明易于检测。水循环过滤系统可另选。 二、技术指标及报价:1、 燃油箱盖密封性试验:(1) 油箱注水流量控制装置和抽水系统:充满额定水± 95%(此系统随取随用,此系统费用不包含在该项试验设备费用中,价格按市场同类产品价格做适当调整)(2) 翻转/复位精度:± 3° (3) 自动称量: 0~30g~100g连续称重(4) PLC控制显示:0~15s~1min~2min(5) 合格/不合格报警、打印。(6) 操作平台旋转时安全保护功能。(7) 漏杯电子定位系统(8) 报价: 燃油箱耐压试验,安全阀开启压力试验及燃油箱进气阀开启压力试验台:(9) 压缩空气源: 4.0Mpa(此设备随取随用,此设备费用不包含在该项试验设备价格中,价格按市场同类产品价格做适当调整)(10) 加压速率控制: 8kPa/min(11) PLC控制显示:监测气源: 0~100kPa± 2%开启压力控制: 0~100kPa± 1%开启后压力检测:0~60kPa± 1%加压速率控制: 0~8kPa/min± 2%(12) 合格/不合格报警、打印(13) 安全防爆保护(14) 53℃± 2℃水加热循环控制系统(此设备随取随用,此系统费用不包含在该项试验费用中,价格按市场同类产品价格做适当调整) 报价:2、 塑料燃油箱角锤冲击试验(1) 角锤规格: 三角冲锤 15kg(2) 冲击能量: 30J(3) 压力控制: 0~100kPa± 1%(4) 压力检测: 0~100kPa± 1%(5) 冲击位置移动/转动夹持系统(6) 冲击锤提升系统(7) 冲击防护罩(8) 油箱内介质回收过滤系统 报价以上塑料燃油箱角锤冲击试验需要在借鉴国内外相关产品的经验并根据客户要求做适当调整,以上价格仅供参考。4, 燃油箱密封性试验台。(1) 压力控制: 0~100kPa± 1%(2) 压力检测: 0~100kPa± 1%(3) PLC控制显示:监测气源: 0~100kPa± 2%(4) 高亮度水下测漏箱 (5) 水循环过滤系统可选配。(此系统费用不包含在该项试验费用中,价格按市场同类产品价格做适当调整)报价以上试验所需的燃油箱进出口密封装置需要根据具体装配要求双方确定方案,价格待定。三各试验台所用配件一览1, 燃油箱盖密封性试验。⑴ 大连电机厂生产的三相异步电机,3KW⑵ 与电机匹配的日本富士变频调速器⑶ 国产优质减速器⑷ 日本欧姆龙可编程控制器⑸ 日本富士伺服电机⑹ 国产优质电子天平⑺ 国产优质直线导轨⑻ 国产优质电器开关⑼ 研华工控机,显示器及电脑操作台2. 燃油箱耐压试验,安全阀开启,进气阀开启压力试验⑴ 日本欧姆龙可编程控制器⑵ 日本SMC压力控制表⑶ 国产优质气动三联件,⑷ 国产优质压缩机(不包含在整体报价中,根据客户要求选配)⑸ 温度控制系统⑹ 国产优质比例阀⑺ 国产优质自吸泵3.塑料燃油箱角锤冲击试验⑴ 国产优质万向轴承⑵ 国产优质电磁离合器4.燃油箱密封性试验 ⑴ 日本欧姆龙可编程控制器 ⑵ 日本SMC压力控制表 ⑶ 国产优质气动三联件 ⑷ 国产优质气动导轨 ⑸ 国产优质电器元件公司名称:长春市智能仪器设备有限公司 地址:长春市经济开发区昆山路2755号联系电话 传真 联系人:芮小姐:.cn

  新能源汽车引领下年更新159条标准——2021汽车材料及零部件测试标准盘点

  2021年可谓标准“元年”,中央、国务院印发《国家标准化发展纲要》,将推动标准化与科技创新互动发展作为重要任务之一,研究制定新能源汽车、智能网联汽车和机器人等领域关键技术标准,推动产业变革。我国是汽车产销第一大国,随着新能源汽车、智能网联汽车技术的快速发展和应用,充分发挥标准的引领和规范作用,已成为支撑我国汽车产业转型升级和高质量发展的推动力。回顾过去这一年,我国批准发布大量汽车标准,本文就国家标准、行业标准及主流团体标准进行了简要盘点,以飨读者。国家标准国家标准分为强制性标准和推荐性标准两种,强制性标准主要包括汽车的安全性标准、汽车排放物的控制标准、汽车操声限制标准、汽车燃油消耗量限制标准等。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的国家标准共58项。序号标准号标准名称发布日期实施日期1GB 17675-2021汽车转向系 基本要求2021/2/202022/1/12GB 19578-2021乘用车燃料消耗量限值2021/2/202021/7/13GB 26512-2021商用车驾驶室乘员保护2021/2/202022/1/14GB/T 39851.2-2021道路车辆 基于控制器局域网的诊断通信 第2部分:传输层协议和网络层服务2021/3/92021/10/15GB/T 39895-2021汽车零部件再制造产品 标识规范2021/3/92021/10/16GB/T 39897-2021车内非金属部件挥发性有机物和醛酮类物质检测方法2021/3/92021/10/17GB/T 39896-2021厢式货车系列型谱2021/3/92021/10/18GB/T 32694-2021插电式混合动力电动乘用车 技术条件2021/3/92021/10/19GB/T 26779-2021燃料电池电动汽车加氢口2021/3/92021/10/110GB/T 19753-2021轻型混合动力电动汽车能量消耗量试验方法2021/3/92021/10/111GB/T 19237-2021汽车用压缩天然气加气机2021/3/92021/10/112GB/T 18386.1-2021电动汽车能量消耗量和续驶里程试验方法 第1部分:轻型汽车2021/3/92021/10/113GB/T 39901-2021乘用车自动紧急制动系统(AEBS)性能要求及试验方法2021/3/92021/10/114GB/T 39899-2021汽车零部件再制造产品技术规范 自动变速器2021/3/92021/10/115GB 9656-2021机动车玻璃安全技术规范2021/4/302023/1/116GB 40164-2021汽车和挂车 制动器用零部件技术要求及试验方法2021/4/302022/1/117GB/T 40032-2021电动汽车换电安全要求2021/4/302021/11/118GB/T 31498-2021电动汽车碰撞后安全要求2021/8/192022/3/119GB/T 40432-2021电动汽车用传导式车载充电机2021/8/192022/3/120GB/T 40494-2021机动车产品使用说明书2021/8/192022/3/121GB/T 40499-2021重型汽车操纵稳定性试验通用条件2021/8/192022/3/122GB/T 40501-2021轻型汽车操纵稳定性试验通用条件2021/8/192022/3/123GB/T 40509-2021汽车转向中心区操纵性过渡特性试验方法2021/8/192022/3/124GB/T 40507-2021乘用车 自由转向特性 转向脉冲开环试验方法2021/8/192022/3/125GB/T 40512-2021汽车整车大气暴露试验方法2021/8/192022/3/126GB/T 40521.1-2021乘用车紧急变线乘用车紧急变线.3-2021中国汽车行驶工况 第3部分:发动机2021/8/192022/3/129GB/T 40429-2021汽车驾驶自动化分级2021/8/192022/3/130GB/T 24347-2021电动汽车DC/DC变换器2021/8/192022/3/131GB/T 40428-2021电动汽车传导充电电磁兼容性要求和试验方法2021/8/192022/3/132GB/T 34015.4-2021车用动力电池回收利用 梯次利用 第4部分:梯次利用产品标识2021/8/192022/3/133GB/T 40433-2021电动汽车用混合电源技术要求2021/8/192022/3/134GB/T 40430-2021道路车辆 基于控制器局域网的诊断通信 符号集2021/8/192022/3/135GB/T 34015.3-2021车用动力电池回收利用 梯次利用 第3部分:梯次利用要求2021/8/192022/3/136GB/T 14172-2021汽车、挂车及汽车列车静侧倾稳定性台架试验方法2021/8/192022/3/137GB/T 40822-2021道路车辆 统一的诊断服务2021/10/112022/5/138GB/T 40861-2021汽车信息安全通用技术要求2021/10/112022/5/139GB/T 5334-2021乘用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/140GB/T 39851.3-2021道路车辆 基于控制器局域网的诊断通信 第3部分:排放相关系统的需求2021/10/112022/5/141GB/T 33598.3-2021车用动力电池回收利用 再生利用 第3部分:放电规范2021/10/112022/5/142GB/T 38775.7-2021电动汽车无线部分:互操作性要求及测试 车辆端2021/10/112022/5/143GB/T 12678-2021汽车可靠性行驶试验方法2021/10/112022/5/144GB/T 27840-2021重型商用车辆燃料消耗量测量方法2021/10/112022/5/145GB/T 19754-2021重型混合动力电动汽车能量消耗量试验方法2021/10/112022/5/146GB/T 40712-2021多用途货车通用技术条件2021/10/112022/5/147GB/T 40711.2-2021乘用车循环外技术/装置节能效果评价方法 第2部分:怠速起停系统2021/10/112022/5/148GB/T 38775.5-2021电动汽车无线部分:电磁兼容性要求和试验方法2021/10/112022/5/149GB/T 40578-2021轻型汽车多工况行驶车外噪声测量方法2021/10/112022/5/150GB/T 12535-2021汽车起动性能试验方法2021/10/112022/5/151GB/T 40625-2021汽车加速行驶车外噪声室内测量方法2021/10/112022/5/152GB/T 5909-2021商用车 车轮 弯曲和径向疲劳性能要求及试验方法2021/10/112022/5/153GB/T 40711.3-2021乘用车循环外技术/装置节能效果评价方法 第3部分:汽车空调2021/10/112022/5/154GB/T 39037.1-2021用于海上滚装船运输的道路车辆的系固点与系固设施布置 通用要求 第1部分:商用车和汽车列车(不包括半挂车)2021/10/112022/5/155GB/T 40711.4-2021乘用车循环外技术/装置节能效果评价方法 第4部分:制动能量回收系统2021/10/112022/5/156GB/T 40855-2021电动汽车远程服务与管理系统信息安全技术要求及试验方法2021/10/112022/5/157GB/T 40857-2021汽车网关信息安全技术要求及试验方法2021/10/112022/5/158GB/T 40856-2021车载信息交互系统信息安全技术要求及试验方法2021/10/112022/5/1行业标准汽车行业标准主要包括汽车整车、发动机及各大总成的性能要求、技术条件等表明产品本身质量水平的标准。2021年,由全国汽车标准化技术委员会(SAC/TC114)归口管理的行业标准共9项。序号标准号标准名称发布日期实施日期1QC/T 1149-2021大件运输专用车辆2021/5/172021/10/11QC/T 1152-2021电动摩托车和电动轻便摩托车用DC/DC变换器技术条件2021/8/212022/2/12QC/T 1153-2021汽车紧固连接螺栓轴力测试 超声波压电陶瓷片法2021/8/212022/2/13QC/T 1154-2021汽车微电机用换向器2021/8/212022/2/14QC/T 1155-2021汽车用USB功率电源适配器2021/8/212022/2/15QC/T 1156-2021车用动力电池回收利用 单体拆解技术规范2021/8/212022/2/16QC/T 271-2021微型货车防雨密封性试验方法2021/8/212022/2/17QC/T 550-2021汽车用蜂鸣器2021/8/212022/2/18QC/T 62-2021摩托车和轻便摩托车减震器2021/8/212022/2/19QC/T 942-2021汽车材料中六价铬的检测方法2021/8/212022/2/1团体标准本文仅整理由中国汽车工程学会(CSAE)批准发布的团体标准,共92项。中国汽车工程学会标准化工作最早始于2006年,2014年入选首批团体标准试点单位。以下标准自发布之日起生效。序号标准号标准名称发布日期1T/CSAE 172-2021电动乘用车剩余里程准确度评价试验方法2021/2/262T/CSAE 173-2021基于道路载荷谱的汽车用户使用与试验场试验相关性分析评价规程2021/3/293T/CSAE 174-2021汽车产品可靠性增长开发指南2021/3/294T/CSAE 175-2021汽车可靠性设计的用户定义方法2021/3/295T/CSAE 176-2021电动汽车电驱动总成噪声品质测试评价规范2021/3/296T/CSAE 177-2021电动汽车车载控制器软件功能测试规范2021/4/127T/CSAE 179-2021汽车用高韧性热镀铝硅合金镀层热冲压钢板技术要求2021/4/128T/CSAE 180-2021轻型汽车道路行驶工况2021/4/129T/CSAE 40-2021乘用车塑料前端框架技术条件2021/4/1210T/CSAE 178-2021电动汽车高压连接器技术条件2021/5/1311T/CSAE 181-2021汽车室内润滑脂气味测试及评价方法2021/5/1312T/CSAE 182-2021汽油机油低速早燃性能测试方法2021/5/1313T/CSAE 184-2021电动汽车动力蓄电池健康状态评价指标及估算误差试验方法2021/5/1314T/CSAE 185-2021自动驾驶地图采集要素模型与交换格式2021/5/1315T/CSAE 186-2021电动汽车动力蓄电池箱火灾用气体防控装置2021/5/1316T/CSAE 183-2021燃料电池堆及系统基本性能试验方法2021/6/1117T/CSAE 75.2-2021汽车防锈包装规程 第2部分:动力总成及其主要零部件2021/6/1118T/CSAE 191-2021全球典型地区气候环境老化严酷度分级2021/6/1119T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1120T/CSAE 193-2021汽车用自攻螺钉在热塑性塑料上拧紧扭矩性能试验方法2021/6/1121T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1122T/CSAE 191-2021全球典型地区气候环境老化严酷度分级2021/6/1123T/CSAE 192-2021汽车零部件电镀和涂装实验室 通用技术要求2021/6/1124T/CSAE 193-2021汽车用自攻螺钉在热塑性塑料上拧紧扭矩性能试验方法2021/6/1125T/CSAE 194-2021汽车外饰件用PVD涂层技术条件2021/6/1126T/CSAE 195-2021铝合金底盘件加速腐蚀试验及评价方法2021/6/1127T/CSAE 196-2021整车海运外观腐蚀模拟试验及评价方法2021/6/1128T/CSAE 197-2021乘用车镁合金车轮耐蚀性能试验方法2021/6/3029T/CSAE 198-2021汽车用高强韧类高真空压铸铝合金材料技术条件2021/6/3030T/CSAE 199-2021汽车用高真空压铸铝合金减振器支座技术条件2021/6/3031T/CSAE 200-2021汽车用铝合金直锻工艺轮毂技术条件2021/6/3032T/CSAE 201-2021汽车用薄钢板冲压极限减薄率测试方法2021/6/3033T/CSAE 202-2021汽车用铝及铝合金搅拌摩擦焊技术条件2021/6/3034T/CSAE 203-2021汽车用铝与铝合金流钻铆接技术条件2021/6/3035T/CSAE 204-2021汽车用中低强度钢与铝自冲铆接一般技术要求2021/6/3036T/CSAE 205-2021乘用车镁合金前端框架技术条件2021/6/3037T/CSAE 206-2021汽车用纤维增强复合材料层合板高应变速率层间剪切强度试验方法2021/6/3038T/CSAE 207-2021汽车用纤维增强复合材料层合板高应变速率拉伸试验方法2021/6/3039T/CSAE 208-2021碳纤维复合材料汽车地板用环氧树脂技术条件2021/6/3040T/CSAE 209-2021热固性碳纤维复合材料汽车前机舱盖板技术条件2021/6/3041T/CSAE 210-2021连续碳纤维增强热固性复合材料汽车前防撞梁铺层设计方法2021/6/3042T/CSAE 211-2021智能网联汽车数据共享安全要求2021/7/1543T/CSAE 212-2021智能网联汽车场景数据图像标注要求及方法2021/7/1544T/CSAE 213-2021智能网联汽车激光雷达点云数据标注要求及方法2021/7/1545T/CSAE 187-2021氢燃料电池发动机用离心式空气压缩机性能试验方法2021/7/2346T/CSAE 188-2021 轻型汽油车用耐压力燃油系统排放性能要求和试验方法2021/7/2347 T/CSAE 190.1-2021汽车用轮毂电动轮总成 术语2021/7/2348T/CSAE 190.2-2021汽车用轮毂电动轮总成 技术条件2021/7/2349T/CSAE 190.3-2021汽车用轮毂电动轮总成 试验方法2021/7/2350T/CSAE 190.4-2021汽车用轮毂电动轮总成 可靠性试验方法2021/7/2351T/CSAE 214-2021动力锂离子电池梯次利用储能电站火灾风险评估指南2021/8/2652T/CSAE 215-2021动力锂离子电池梯次利用储能电站火灾应急预案编制指南2021/8/2653T/CSAE 216-2021动力锂离子电池梯次利用储能系统火灾防控装置性能要求与试验方法2021/8/2654T/CSAE 217-2021动力锂离子电池梯次利用储能系统消防安全技术条件2021/8/2655T/CSAE 218-2021轻型汽油车用耐压力燃油箱特殊安全性能要求和试验方法2021/8/2656T/CSAE 221-2021SP、GF-6汽油机油2021/8/2657T/CSAE 11.1-2021商用车润滑导则 第1部分:发动机润滑油的选用(修订)2021/8/2658T/CSAE 11.2-2021商用车润滑导则 第2部分:变速器和驱动桥润滑油的选用(修订)2021/8/2659T/CSAE 11.3-2021商用车润滑导则 第3部分:润滑脂的选用(修订)2021/8/2660T/CSAE 11.4-2021商用车润滑导则 第4部分:特种液的的选用(修订)2021/8/2661T/CSAE 25.1-2021乘用车润滑导则 第1部分:发动机润滑油的选用(修订)2021/8/2662T/CSAE 25.2-2021乘用车润滑导则 第2部分:传动系统润滑油的选用(修订)2021/8/2663T/CSAE 25.3-2021乘用车润滑导则 第3部分:特种液的的选用(修订)2021/8/2664T/CSAE 219-2021电动汽车锂离子动力蓄电池外部短路试验方法2021/9/2465T/CSAE 220-2021电动汽车锂离子动力蓄电池荷电状态和健康状态估计误差联合测试方法2021/9/2466T/CSAE 222-2021纯电动乘用车车规级芯片一般要求2021/9/2467T/CSAE 223-2021纯电动乘用车控制芯片功能安全要求及测试方法2021/9/2468T/CSAE 224-2021纯电动乘用车通讯芯片功能安全要求及测试方法2021/9/2469T/CSAE 225-2021纯电动乘用车控制芯片功能环境试验方法2021/9/2470T/CSAE 226-2021纯电动乘用车通讯芯片功能环境试验方法2021/9/2471T/CSAE 227-2021纯电动乘用车控制芯片整车环境舱试验方法2021/9/2472T/CSAE 228-2021纯电动乘用车通讯芯片整车环境舱试验方法2021/9/2473T/CSAE 229-2021纯电动乘用车控制芯片整车道路试验方法2021/9/2474T/CSAE 230-2021纯电动乘用车通讯芯片整车道路试验方法2021/9/2475T/CSAE 189-2021电动汽车高压屏蔽线缆及连接器表面转移阻抗测试方法2021/10/2676T/CSAE 231-2021智能网联汽车电磁抗扰性能技术要求与测试评价方法2021/10/2677T/CSAE 232-2021电动汽车碳化硅电机控制器效率测试方法2021/10/2678T/CSAE 233-2021汽车用金属材料圆棒室温高应变速率拉伸试验方法2021/10/2679T/CSAE 234-2021智能网联汽车 线控转向及制动系统数据接口要求2021/10/2680 T/CSAE 235-2021 电动汽车出行碳减排核算方法2021/11/1181 T/CSAE 236-2021 质子交换膜燃料电池发动机 台架可靠性试验方法2021/11/3082 T/CSAE 237-2021 重型汽车实际行驶污染物排放测试技术规范2021/11/3083T/CSAE 243.1-2021道路运输车辆主动安全智能防控系统 第1部分 平台技术要求2021/12/2284T/CSAE 243.2-2021道路运输车辆主动安全智能防控系统 第2部分 通讯协议要求2021/12/2285T/CSAE 243.3-2021道路运输车辆主动安全智能防控系统 第3部分 终端技术要求2021/12/2286 T/CSAE 238-2021汽车正投影面积测量方法2021/12/3087T/CSAE 239-2021汽车整车道路行驶风噪试验方法2021/12/3088T/CSAE 240-2021电动汽车动力蓄电池退役技术条件2021/12/3089 T/CSAE 241-2021电动汽车动力蓄电池剩余寿命评估导则2021/12/3090T/CSAE 242-2021绿色设计产品评价技术规范 车用动力蓄电池2021/12/3091T/CSAE 244-2021纯电动乘用车底部抗碰撞能力要求及试验方法2021/12/3092 T/CSAE 245-2021退役动力电池回收服务网点通用规范2021/12/30

  2020年11月5-6日,2020年第四届轨道交通车辆空调技术研讨会在南京瑞斯丽酒店举办,本届研讨会由同济大学、中车南京浦镇车辆有限公司、南京浦口经济开发区管理委员会联合主办。加野作为暖通空调环境检测设备的供应商,应邀参加此次研讨会。 2019 年底爆发的新冠肺炎疫情,也是对轨道交通的极大考验,轨道车辆空调系统设计需要考虑“平战结合”。本届研讨会的主要议题:新冠疫情应对及“平战结合设计”、绿色健康舒适轨道交通车辆空调、轨道车辆空调高效压缩机等议题。 此次研讨会也让与会嘉宾对KANOMAX集团的汽车空调假人测试系统、空调热环境综合测试系统、多点风速测试系统及正负压管道鉴定系统相关解决方案有了更加深入的了解和认识。 【主持人:臧建彬 同济大学教授】 出席会议的有同济大学、中南大学、华中科技大学、青岛理工大学、中车南京浦镇车辆有限公司、中车株洲电力机车有限公司、中车长春轨道客车股份有限公司、中车青岛四方机车车辆股份有限公司、中车唐山机车车辆有限公司、中国国家铁路集团有限公司以及各铁路局车辆主管部门、各城市地铁运营公司车辆主管部门、轨道交通车辆空调设计和咨询机构、轨道交通车辆空调设备提供商等企事业单位的知名专家、学者。 研讨会现场座无虚席,在诸位演讲嘉宾的演讲结束后,现场掀起了一阵学术讨论、与会者提问的小高潮。 城市轨道交通车辆空调技术研讨会聚焦于我国城市轨道交通车辆空调技术发展,是城市轨道交通车辆技术相关的高等院校、企事业、各省市地方学会专家代表共同进行学术交流、技术及产品展示、科学前沿问题探讨及交流平台,共同推动中国轨道交通车辆空调事业快速、稳定、持续发展。

  近日,工业和信息化部批准公布汽车行业标准13项,由北京科学技术出版社出版,并公示《电动摩托车和电动轻便摩托车用DC/DC变换器技术条件》等9项汽车行业标准,截止日期2021年5月20日。13项汽车行业标准批准公布序号标准编号标准名称标准主要内容代替标准采标情况实施日期1 QC/T 1145-2021柴油/甲醇双燃料发动机技术条件 本标准规定了柴油/甲醇双燃料发动机的技术要求、试验方法、检验规则和标志、包装、运输及贮存。 本标准适用于车用柴油/甲醇双燃料压燃式发动机。2021-07-012 QC/T 1150-2021甲醇汽车燃料系统技术条件 本标准规定了甲醇汽车燃料系统的术语和定义,要求及试验方法。 本标准适用于装备甲醇单燃料发动机或柴油/甲醇双燃料发动机的汽车。2021-07-013 QC/T 1151-2021甲醇燃料汽车技术条件 本标准规定了甲醇燃料汽车的术语和定义、技术要求、试验方法、检验规则、标志、标签、使用说明书、运输和贮存。 本标准适用于甲醇燃料汽车。2021-07-014 QC/T 1142-2021汽车车轮固有频率试验方法 本标准规定了汽车车轮在刚性约束条件下固有频率试验方法的术语和定义、试验样品、试验环境、试验装置、试验步骤及数据处理。 本标准适用于乘用车车轮。2021-07-015 QC/T 1143-2021汽车车轮静态弯曲刚度试验方法 本标准规定了汽车车轮静态弯曲刚度试验方法的术语和定义、试验样品、试验装置、试验步骤及数据处理。 本标准适用于汽车车轮。2021-07-016 QC/T 417-2021摩托车和轻便摩托车用电线束总成 本标准规定了摩托车和轻便摩托车电线束和连接器的要求以及试验方法。 本标准适用于摩托车和轻便摩托车的电线束和电气设备用低压连接器(电压不高于60 V)和高压连接器(电压高于60 V但不高于600 V),包括线线连接器和设备连接器。QC/T 417.2-20012021-07-017 QC/T 1144-2021摩托车和轻便摩托车用氧传感器 本标准规定了摩托车和轻便摩托车用氧传感器的要求、试验方法。 本标准适用于摩托车和轻便摩托车用氧传感器。2021-07-018 QC/T 1146-2021甲醇燃料发动机技术条件 本标准规定了车用甲醇燃料发动机的术语和定义、技术要求、试验方法、检验规则、标志、包装、运输及贮存。 本标准适用于采用M100车用甲醇燃料的点燃式发动机。2021-07-019 QC/T 1147-2021汽车发动机电控硅油风扇离合器 本标准规定了汽车发动机电控硅油风扇离合器的术语和定义、技术要求、试验方法、检验规则,以及标识、包装、运输和贮存。 本标准适用于汽车发动机,工程机械、拖拉机、小型船舶以及其它固定、移动式内燃机可参照执行。2021-07-0110 QC/T 1148-2021汽车背门电动开闭系统 本标准规定了M1类汽车背门电动开闭系统的技术要求、试验方法、检验规则及标志、包装、运输、贮存等。 本标准适用于电动撑杆驱动的汽车背门电动开闭系统。2021-07-0111 QC/T 207-2021汽车用普通气弹簧 本标准规定了汽车用普通气弹簧的术语和定义、型式、技术要求、试验方法、检验规则、标志、包装、运输和贮存。 本标准适用于汽车用各种规格的固定行程普通气弹簧,其他机械用气弹簧可参照采用。QC/T -07-0112 QC/T 629-2021汽车遮阳板 本标准规定了汽车遮阳板的术语和定义、技术要求、试验方法、检验规则、标志、包装、运输及贮存。 本标准适用于汽车遮阳板,不包括卷帘式、着色玻璃等遮阳型式。QC/T -07-0113 QC/T 1130-2021甲醇汽车燃料消耗量试验方法 本标准规定了甲醇汽车的燃料消耗量试验方法以及生产一致性的检查和判定方法。 本标准适用于最高车速大于或等于50km/h的轻型甲醇汽车和重型甲醇汽车。2021-07-019项汽车行业标准报批公示序号标准编号标准名称标准主要内容代替标准采标情况1 QC/T 1152-2021电动摩托车和电动轻便摩托车用DC/DC变换器技术条件 本文件规定了电动摩托车和电动轻便摩托车用DC/DC变换器的产品型号编制、要求、试验方法、标志。 本文件适用于电动摩托车和电动轻便摩托车用DC/DC变换器。2 QC/T 271-2021微型货车防雨密封性试验方法 本文件规定了微型货车防雨密封性的试验条件和试验方法。 本文件适用于微型货车,车长小于或等于3500 mm的M1类汽车及其变型车可参照执行。本文件不适用于低速货车。QC/T 271-19993 QC/T 62-2021摩托车和轻便摩托车减震器 本文件规定了摩托车和轻便摩托车减震器的要求、试验方法、检验规则以及产品标志、包装、运输和贮存。 本文件适用于由弹簧、阻尼器及连接件组成的摩托车和轻便摩托车减震器,无液压阻尼减震器也可参照相关条款执行。QC/T 62-20074 QC/T 1153-2021汽车紧固连接螺栓轴力测试 超声波压电陶瓷片法 本文件规定了汽车紧固连接螺栓轴力测试超声波压电陶瓷片法的测试准备、测试方法、数据处理和测试报告的要求。 本文件适用于M6~M27的螺栓。5 QC/T 1154-2021汽车微电机用换向器 本文件规定了汽车微电机用换向器的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于12V和24V的汽车微电机用换向器。6 QC/T 1155-2021汽车用USB功率电源适配器 本文件规定了汽车用USB功率电源适配器的技术要求和试验方法,包括汽车用USB功率电源适配器的检验规则和标志、包装、运输与贮存等。 本文件适用于M、N、O、G类机动车上使用USB A型插座的汽车用USB功率电源适配器。7 QC/T 550-2021汽车用蜂鸣器 本文件规定了汽车用蜂鸣器的技术要求、试验方法、检验规则、标志、包装、运输及贮存。 本文件适用于汽车用蜂鸣器,其它机动车可参照执行。QC/T 550-19998 QC/T 942-2021汽车材料中六价铬的检测方法 本文件规定了汽车材料中六价铬检测的术语与定义、X射线荧光光谱法、金属防腐镀层中六价铬定性试验、金属防腐镀层中六价铬含量测定、聚合物材料和电子材料中六价铬含量测定、皮革材料中六价铬含量测定(比色法)、皮革材料中六价铬含量测定(色谱法)和试验报告等。 本文件适用于汽车材料中六价铬的定性与定量测试。QC/T 942-20139 QC/T 1156-2021车用动力电池回收利用 单体拆解技术规范 本文件规定了车用动力电池单体拆解的术语和定义、总体要求、作业要求、贮存和管理要求、安全环保要求。 本文件适用于退役车用动力锂离子单体蓄电池的拆解。以上标准报批稿请登录“标准网”()“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2021年4月20日-2021年5月20日

  适用于iOS和Android系统的分离式智能红外热像仪FLIR ONE Edge Pro,可广泛应用在电力、暖通、建筑等行业。今天小菲就重点给大家说下,它在汽修行业中如何快速准确地识别和诊断车辆中的各种问题,高效汽车检测,精确诊断,最终提高车辆性能和安全性的事实!1查找排气泄漏红外热像仪是识别车辆废气泄漏的重要工具。使用FLIR ONE Edge Pro检查排气泄漏时,检测人员可以快速轻松地扫描歧管、管道、可见接头和垫圈之间的连接,热像仪可以帮助显示可能表明存在排气泄漏的温度变化。此外,FLIR MSX(多波段动态成像)技术(专利号:CN4.9)通过将可见光相机拍摄的细节信息实时添加至红外图像中,增加图像的清晰度,并在热读数中嵌入边缘和轮廓细节,从而为排气系统和排气系统内的任何异常情况创建了更全面的视觉信息。2诊断催化转化器问题催化转化器在减少车辆有害排放方面发挥着至关重要的作用,但由于其位置和热量特征,诊断这些部件的问题可能较困难。然而,FLIR ONE Edge Pro支持蓝牙和Wi-Fi连接,汽车检修人员可以在车辆周围随意移动,从不同角度捕捉催化转化器的详细热图像,而不受电缆或物理连接的限制。FLIR ONE Edge Pro机身小巧可分离,可以更轻松、更方便地进入这些狭小、难以进入的空间。3解决空调问题在识别汽车空调系统有问题时,热像仪是一个非常有用的工具。然而,要确定问题的根本原因可能比较困难,因为通风口在驾驶室内可见,而空调系统的大部分是隐藏的,难以接近。借助FLIR ONE Edge Pro的无线功能,汽车专业人士基本上可以同时看到系统的两个区域。Edge Pro的Ignite云服务无线传输功能允许多名技术人员同时查看系统的不同部分。这使他们能够快速找到可能影响系统性能的潜在问题,例如过热、制冷剂泄漏或堵塞等。空调系统可能发生泄漏正常工作的空调系统4检查制动鼓由于通道和能见度有限,传统的制动鼓检测可能比较困难。然而,有了FLIR ONE Edge Pro智能红外热像仪,在检查制动鼓时,它的无线传输功能让检测人员能够在车辆周围自由移动,从不同角度捕捉制动鼓的详细热图像。通过将热数据无线传输到智能手机或平板电脑,技术人员可以立即分析制动鼓的温度分布,识别潜在的异常情况,比如加热不均匀、过热或磨损迹象等。这些有价值的分析结果能够让用户及早发现问题,尽早采取维修措施,以确保最佳的制动性能和安全性。5检查除霜格栅的加热元件除霜格栅在确保寒冷天气条件下,也能看清窗外情况方面发挥着至关重要的作用,但加热元件出现问题会阻碍其功能。借助FLIR ONE Edge Pro,汽车专业人员可以更方便、更高效地对除霜网格进行检测。通过将热数据无线传输到智能手机或平板电脑,技术人员可以立即分析除霜格栅的温度分布,并且他们可以比传统热像仪更方便地比较车内和车外的情况。借助这种无线传输技术,用户可以在更短的时间内定位、诊断和修理潜在的问题,例如加热元件故障或效率低下、异常热点或冷点等。FLIR ONE Edge Pro智能红外热像仪彻底改变了汽修人员处理诊断和维护任务的方式。其无线技术促进了汽车行业更高效、更准确的检测,最终提高了车辆的可靠性,并优化了每个人的操作和安全性。随着热像仪在汽修行业应用越来越普遍如何选择一款高性价比的热像检测工具?FLIR ONE Edge Pro热像仪既能满足汽修的检测需求还能让检修过程有迹可循,赢得客户信任目前这款热像仪

  截止日前,2023年四方光电股份有限公司(以下简称“四方光电”)及其子公司陆续发布6则公告,披露收到国内外多家客户项目定点通知书,为欧洲著名主机厂、韩国著名主机厂、国际知名汽车空调企业、国内知名新能源主机厂的8个项目供应车规级传感器产品和总成。根据客户预测,以上项目总金额约为14.1亿元。公告称,如后续订单陆续顺利转化,预计将对公司本年及未来年度的经营业绩产生积极影响,具体影响金额及影响时间将视订单的具体情况而定。据了解,四方光电是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业,2003年成立于武汉光谷,构建了基于非分光红外(NDIR)、光散射探测(LSD)、超声波(Ultrasonic)、紫外差分吸收光谱(UV-DOAS)、热导(TCD)、激光拉曼(LRD)、金属氧化物半导体(MOX)等原理的气体传感技术平台,广泛应用于空气品质、环境监测、工业过程、安全监控、医疗健康、智慧计量等领域。公司车载传感器业务主要包括汽车舒适系统传感器、车内空气改善装置、安全系统传感器及高温气体传感器,汽车舒适系统传感器主要包括车规级CO2传感器总成、车规级PM2.5传感器总成、AQM空气质量传感器总成、温湿度传感器总成等;车内空气改善装置主要包括负离子、香氛发生器等;安全系统传感器主要包括制冷剂泄漏监测传感器、动力电池热失控监测传感器等;高温气体传感器主要包括发动机用氧气传感器、发动机用氮氧传感器。自 2017 年取得 IATF16949:2016 汽车质量管理体系认证,获得主机厂一级供应商资格以来,公司车载传感器产品线进一步延伸,产品应用范围从最初的中高端车型覆盖至更广阔的车型。附公告详情:2023年2月8日公告四方光电股份有限公司于近日收到1家欧洲著名主机厂(根据与上述客户签署的保密协议,不能披露客户的具体名称)1个项目定点通知书,确认公司为其供应车规级PM2.5传感器总成。根据上述客户预测,上述1个项目定点包括4个车型平台,预计生命周期分别为8年、8年、9年及9年,总金额约为3.56亿元。2023年3月23日公告四方光电股份有限公司于近日收到1家欧洲著名主机厂(根据与上述客户签署的保密协议,不能披露客户的具体名称)1个项目定点通知书,确认公司为其提供定制开发服务与车规级PM2.5与CO2传感器总成、车规级PM2.5与AQS空气质量传感器总成产品。根据上述客户预测,上述1个项目定点包括4个车型平台,预计生命周期分别为8年、8年、9年及9年,总金额约为2.32亿元(含税)。2023年6月6日公告四方光电股份有限公司于近日收到1家韩国著名主机厂(根据与上述客户签署的保密协议,不能披露客户的具体名称)1个项目定点通知书,确认公司为其供应车规级PM2.5传感器总成产品,根据上述客户预测,上述1个项目定点包括6个车型平台,预计生命周期分别为6年、6年、7年、8年、8年、8年,总金额约为1.47亿元。2023年11月10日公告四方光电股份有限公司(陆续收到1家国际知名汽车空调企业(根据与上述客户签署的保密协议,不能披露客户的具体名称)3个项目定点通知书,确认公司为其供应车规级PM2.5传感器,根据上述客户预测,上述3个项目定点预计生命周期均为7年,总金额约为12,812万元(含税)。2023年11月14日公告四方光电股份有限公司下设全资子公司武汉四方汽车电子有限公司(以下简称“四方汽车电子”)于近日收到1家国内知名新能源主机厂(根据与上述客户签署的保密协议,不能披露客户的具体名称)1个项目定点通知书,确认四方汽车电子为其供应车规级CO2传感器产品,根据上述客户预测,上述1个项目定点包括4个车型平台,预计生命周期均为5年,总金额约为4.20亿元(含税)。2023年12月16日公告四方光电股份有限公司于近日收到1家欧洲著名主机厂(根据与上述客户签署的保密协议,不能披露客户的具体名称)1个项目定点通知书,确认公司为其供应车规级AQS空气质量传感器总成,根据上述客户预测,上述1个项目定点包括4个车型平台,本次定点项目从2025年开始交付,预计生命周期为10年,总金额约为1.27亿元。

  10月8日,工信部公示了第三批制造业单项冠军企业名单和单项冠军产品拟公布名单。共有68家企业荣膺“第三批制造业单项冠军示范企业”称号,26家企业获得“第三批制造业单项冠军培育企业”称号,另有66款产品摘得“第三批制造业单项冠军产品”的桂冠。其中主营离子色谱仪的青岛盛瀚色谱技术有限公司跻身本批单项冠军培育企业名单,也成为全名单中,唯一上榜的仪器企业。本名单旨在促进我国制造业的创新能力和产品质量的提升,选拔细分产品领域的冠军企业,助力大国制造的理念腾飞,提升中国的国际竞争力。参选企业由企业自行申报和各地工信主管部门、央器特别推荐几部分构成。列入英雄榜的企业和产品都经过了相关行业协会限定性条件论证和专家组论证。在工信部于2017年公布的第二批制造业单项冠军企业和单项冠军产品名单中,有1家一起企业入选制造业单项冠军示范企业名单。两家仪器企业入选制造业单项冠军培育企业名单。2018年拟公布第三批制造业单项冠军企业名单和单项冠军产品拟公布名单全录一、单项冠军示范企业序号示范企业名称主营产品1北京康斯特仪表科技股份有限公司压力校验装置2山西华翔集团股份有限公司制冷压缩机零部件3一汽解放汽车有限公司半挂牵引车4瑞声光电科技(常州)有限公司微型扬声器/受线江苏丰东热技术有限公司可控气氛热处理炉6江苏太平洋精锻科技股份有限公司汽车差速器锥齿轮7南通市通润汽车零部件有限公司螺旋千斤顶8江苏恒立液压股份有限公司车辆工程系列液压缸9今创集团股份有限公司轨道交通内装饰产品10徐州徐工筑路机械有限公司平地机11南京康尼机电股份有限公司轨道车辆自动门系统12江苏天明机械集团有限公司氨纶纺丝卷绕机成套设备13中材科技风电叶片股份有限公司风机叶片14江苏铁锚玻璃股份有限公司轨道交通安全玻璃15江苏鼎胜新能源材料股份有限公司铝箔材16江苏亚星锚链股份有限公司锚链(系泊链)17南通中集罐式储运设备制造有限公司液体运输集装箱18浙江大华技术股份有限公司视频监控产品19宁波博德高科股份有限公司单向走丝电火花加工用切割丝20宁波舜宇车载光学技术有限公司车载镜头21浙江欣兴工具有限公司钢板钻22杭州三花微通道换热器有限公司微通道换热器23宁波合力模具科技股份有限公司压铸模具24万华化学(宁波)容威聚氨酯有限公司隔热保温用组合聚醚多元醇25杭州传化化学品有限公司DTY油剂26浙江大丰实业股份有限公司舞台机械27浙江新澳纺织股份有限公司精梳羊毛纱28浙江恒石纤维基业有限公司风能用玻璃纤维增强材料29安徽昊方机电股份有限公司汽车空调电磁离合器30华孚时尚股份有限公司色纺纱31利辛县富亚纱网有限公司磁性感应纱织物32安徽耐科挤出科技股份有限公司塑料异型材挤出成型模具33厦门立达信绿色照明集团有限公司发光二极管(LED)灯泡(管)34福建雪人股份有限公司工商用制冰机35宁德时代新能源科技股份有限公司锂离子动力电池36福建锦江科技有限公司锦纶长丝37江西远大保险设备实业集团有限公司智能电动(手动)密集架38浪潮电子信息产业股份有限公司多节点服务器39景津环保股份有限公司压滤机40烟台冰轮集团有限公司商业冷冻冷藏制冷集成系统41潍柴动力股份有限公司重型载货车用发动机42济南圣泉集团股份有限公司铸造辅助材料43山东一诺威聚氨酯股份有限公司聚氨酯预聚体44金沂蒙集团有限公司醋酸乙酯45山东金河实业集团有限公司连二亚硫酸钠46山东金城柯瑞化学有限公司头孢克肟侧链酸活性酯47山东农大肥业科技有限公司腐植酸有机-无机肥料48山东润德生物科技有限公司氨基葡萄糖盐酸盐49青岛海尔洗衣机有限公司家用洗衣机50山东瑞丰高分子材料股份有限公司PVC加工抗冲改性剂51肥城金塔酒精化工设备有限公司三效溶剂回收节能蒸馏装置52青岛即发集团股份有限公司棉针织内衣53山东南山智尚科技股份有限公司精梳毛机织物54郑州市钻石精密制造有限公司超硬刀具55中原内配集团股份有限公司气缸套56巩义市恒星金属制品有限公司钢芯铝绞线河南金丹乳酸科技股份有限公司乳酸58武汉精测电子集团股份有限公司液晶面板模组检测设备59武汉锐科光纤激光技术股份有限公司中高功率光纤激光器60安琪酵母股份有限公司酵母制品61宜昌人福药业有限责任公司品62湖南杉杉能源科技股份有限公司锂离子电池正极材料63鹏鼎控股(深圳)股份有限公司挠性印制电路板64广东威特真空电子制造有限公司磁控管65广东兴发铝业有限公司铝合金建筑型材66成都银河磁体股份有限公司粘接稀土永磁元件67四川科伦药业股份有限公司大容量注射剂68云南蓝晶科技有限公司蓝宝石衬底片二、单项冠军培育企业序号培育企业名称主营产品1澜起科技(上海)有限公司DDR系列内存缓冲控制器芯片2上海微创医疗器械(集团)有限公司冠脉药物洗脱支架3江苏宏宝工具有限公司手动工具钳4利欧集团股份有限公司微小型动力式泵5宁波得利时泵业有限公司凸轮式转子泵6浙江华峰热塑性聚氨酯有限公司热塑性聚氨酯弹性体颗粒7浙江欧诗漫集团有限公司珍珠系列护肤品8浪莎控股集团有限公司针织袜9赛特威尔电子股份有限公司独立式报警器10合肥泰禾光电科技股份有限公司色选机11福建睿能科技股份有限公司单系统电脑针织横机控制系统12青岛盛瀚色谱技术有限公司离子色谱仪13威海市泓淋电力技术股份有限公司智能电源连接装置14山东开泰工业科技有限公司铸造行业用金属磨料15保龄宝生物股份有限公司低聚异麦芽糖16山东隆科特酶制剂有限公司食品用糖化酶17金猴集团有限公司天然皮革面普通鞋靴18山东立昌纺织科技有限公司棉制野营用织物制品19泰山玻璃纤维有限公司无碱玻璃纤维无捻纱及制品20山东海天智能工程有限公司脑机接口康复训练系统21威海威高血液净化制品有限公司空心纤维透析器22河南银金达新材料股份有限公司功能性聚酯热收缩(PETG)薄膜23湖南泰嘉新材料科技股份有限公司双金属带锯条24湖南鑫海股份有限公司化纤制渔网25广东万和新电气股份有限公司家用燃气热水器26贵州安吉航空精密铸造有限责任公司航空发动机用精密铸件三、单项冠军产品序号单项冠军产品名称生产企业1污泥智能好氧发酵装置北京中科博联环境工程有限公司2特高压干式空心平波电抗器北京电力设备总厂有限公司3电焊条天津市金桥焊材集团有限公司4乘用车发动机增压器涡轮壳天津达祥精密工业有限公司51000KV单相自耦变压器特变电工沈阳变压器集团有限公司6悬臂式掘进机三一重型装备有限公司7医疗用高压电源变压器上海埃斯凯变压器有限公司81000MW等级超超临界二次再热汽轮机上海电气电站设备有限公司9岸边集装箱起重机上海振华重工(集团)股份有限公司10二硫化碳上海百金化工集团股份有限公司11架空地线复合光缆(OPGW)中天电力光缆有限公司123C电子产品整机装配生产设备博众精工科技股份有限公司13多晶硅片江苏协鑫硅材料科技发展有限公司14智能型万能式断路器常熟开关制造有限公司15汽车发电机用精锻爪极江苏龙城精锻有限公司16高速工具钢江苏天工工具有限公司172,3,3,3-四氟丙烯常熟三爱富中昊化工新材料有限公司18半实心轮胎江苏江昕轮胎有限公司19人工基因合成生物制品南京金斯瑞生物科技有限公司20奥氮平片江苏豪森药业集团有限公司21LED冷链照明灯具赛尔富电子有限公司22全自动单晶硅生长炉浙江晶盛机电股份有限公司23铁氧体永磁元件横店集团东磁股份有限公司24光学反射膜宁波长阳科技股份有限公司25高导精密复合线移动插座公牛集团股份有限公司27银合金/铜铆钉型复合电触头福达合金材料股份有限公司28核电站反应堆压力容器C形密封环宁波天生密封件有限公司29革用聚氨酯树脂浙江华峰合成树脂有限公司30光伏组件封装用乙烯-醋酸乙烯酯共聚物(EVA)胶膜杭州福斯特应用材料股份有限公司31活性艳蓝KN—R台州市前进化工有限公司32工业用一异丙胺浙江新化化工股份有限公司33圆珠笔贝发集团股份有限公司34食品用木糖醇浙江华康药业股份有限公司35侧吸式吸排油烟机宁波方太厨具有限公司36工业用缝纫机伺服电机及控制系统浙江琦星电子有限公司37多头电脑刺绣机浙江越隆缝制设备有限公司38锦纶弹力丝义乌华鼎锦纶股份有限公司39铜管材浙江海亮股份有限公司40超薄浮法电子玻璃蚌埠中建材信息显示材料有限公司41LBO晶体器件福建福晶科技股份有限公司42木制活性炭福建元力活性炭股份有限公司43合成纤维制染色经编织物福建华峰新材料有限公司44皮带抽油机胜利油田高原石油装备有限责任公司45凿岩机山东天瑞重工有限公司46风力发电机主轴通裕重工股份有限公司47百万千瓦级压水堆核电厂一回路主管道烟台台海玛努尔核电设备有限公司48长碳链二元酸凯赛(金乡)生物材料有限公司49电波钟山东康巴丝实业有限公司50船舶压载水管理系统青岛双瑞海洋环境工程股份有限公司51汽车发动机排气歧管产品西峡县内燃机进排气管有限责任公司52油气井封层桥塞四机赛瓦石油钻采设备有限公司53全断面隧道掘进机中国铁建重工集团有限公司54无菌制剂机器人自动化生产线登机桥深圳中集天达空港设备有限公司56全棉水刺无纺布及其制品稳健医疗用品股份有限公司57陶瓷砖抛光线广东科达洁能股份有限公司58LED显示屏深圳市洲明科技股份有限公司59棕刚玉重庆市赛特刚玉有限公司60纳米炭混悬注射液重庆莱美药业股份有限公司61草甘膦原药四川省乐山市福华通达农药科技有限公司62湿法净化磷酸瓮福(集团)有限责任公司63JJC型接触网检修作业车宝鸡中车时代工程机械有限公司64铜铬电触头陕西斯瑞新材料股份有限公司65矿产镍金川集团股份有限公司66异亮氨酸新疆阜丰生物科技有限公司

  新车测试对于汽车产品的意义甚大。纵观跨国汽车厂商,在任何一款新车投产之前都要经过极为严谨的性能测试,而正是因为有了测试才使得合资车的质量口碑被口口相传。为了达到与跨国车企一样的质量标准,奇瑞于2006年2月组建了奇瑞试验技术中心(以下简称:试验中心),投资14.5亿元、建成占地近30万平米,包括汽车零部件、节能环保、整车道路、动力总成、NVH、被动安全、材料、计量在内的八大实验室和一条整车操稳/NVH调校试车跑道,具备了23个专业模块的2600余类试验项目能力,涵盖整车和零部件可靠性、操稳、NVH、安全、环境适应性、动力性经济性、电子电器/EMC、空调系统、耐侯性、排放和材料等性能的试验开发和验证能力。试验中心2010年7月20日获得测量管理体系认证;2011年8月3日获得国家实验室认可;2011年11月9日获得英国车辆认证局实验室检测能力证书。试验中心现有员工600余人,其中技术人员占总人数的80%以上,不仅汇聚了国内汽车行业的汽车试验专家,还拥有10多名世界汽车行业颇有造诣和影响力的美、日、韩等外籍专家。试验中心现拥有各类仪器设备800余台套,不仅包含各类先进程度居国内第一、国际领先的关键试验设备,而且拥有一大批已获国家专利的自制试验设备。目前,试验技术中心能满足每年开发30款全新车型和生产200万辆整车的试验验证能力需求。 此外,奇瑞实验中心内含9个重点实验室,其中汽车碰撞实验室是亚洲最大的,实验室可满足欧、美、日等国相关安全法规的要求,可对实车开展刚性壁障的正碰、40%偏置碰、30°角度碰、正面柱碰、正侧柱碰、车对车的正碰、车对车每隔15°的角度碰、追尾碰和翻滚试验 可开展台车的侧碰和正碰模拟试验,也可进行安全气囊和约束系统的开发试验 可进行成人头型、儿童头型以及人体小腿、大腿及胸部等模块的行人保护试验。实验室整体试验能力处于行业领先水平。在国家工程实验室挂牌仪式上,该实验室将进行美标30°角的实车“中国第一碰”。整车实验室:试验室可开展整车动力性试验、燃油经济性试验、制动性试验、操纵稳定性试验、传动系耐久性试验、高速耐久、加速侵蚀耐久、制动评价、底盘系统匹配试验等在内的几乎所有整车试验项目。整车试验能力居行业先进水平。NVH实验室:实验室可满足ECE、ISO等相关噪声标准要求,开展包含整车、动力总成、零部件等在内的较为齐全的NVH试验开发工作。是目前国内功能齐全、设备先进、综合开发能力一流的试验开发于一体试验室。节能环保实验室:实验室能满足欧Ⅳ、欧Ⅴ、美标等排放法规的要求,模拟整车在高低温环境下的环境及行驶工况的能力,模拟控制范围能基本覆盖人类陆地活动的各类气候条件,开展四驱及两驱车的环境适应性、空调系统、冷却系统、温度场、整车耐侯性、排放及经济性试验。整体试验能力处于行业领先水平。零部件实验室:实验室可开展整车道路模拟试验,开展全车各总成、各系统及零部件的性能试验和可靠性试验。该实验室是国内涉及专业最多、覆盖面最宽的零部件综合实验室。动力总成实验室:实验室可满足欧Ⅴ及美标超低排标准,开展各类汽油、柴油发动机的性能开发和可靠性试验,功率覆盖330KW以内的汽油机、440KW以内的柴油机 变速箱试验台可开展MT、AT、AMT和CVT各种性能和可靠性试验,扭矩覆盖横置400NM、纵置550NM以内的变速箱;同时可开展发动机ECU标定开发及变速箱TCU的匹配工作。整体试验能力处于行业领先水平。材料实验室:实验室可开展汽车金属材料静态性能、动态性能、化学成分、物理性能、无损检测、焊接、金相、失效模式的试验与分析 开展车用塑料、橡胶、纺织品、皮革等高分子材料的性能测试、材质分析、温湿度试验、老化试验 并可开展汽车车内空气质量监测、汽车材料有害物质检测等试验项目。整体试验能力处于行业先进水平,其中汽车车内气味监测及控制、汽车材料有害物质检测、汽车金属材料疲劳寿命测试、重金属测试、材料回收等技术能力居行业领先地位。计量中心:实验室可对产品开发过程中的零部件及整车开展尺寸测量工作,对检测设备开展校准工作 可开展发动机、变速箱、整车的全尺寸检测及车身检具测试 校准能力覆盖长、热、力、电等基础参量及汽车专用参量 能对汽车专用及综合测试设备开展校准。整体技术能力处于行业先进水平,其中精密测量能力居行业领先地位。奇瑞试验中心投入运营近两年来,奇瑞碰撞安全试验室共计进行了整车碰撞试验286辆,模拟台车碰撞试验432次,行人保护试验多款车型456辆,车对车碰撞试验12次。大手笔的安全质量研发投入,让奇瑞获得了大量真实可靠的一线试验数据。不仅停留在试验阶段,奇瑞碰撞安全试验室还在这一年中开展了多项研究,包括10余次车对车碰撞相容性研究,以及针对汽车安全件(车身纵梁、横梁、吸能盒等)展开的研究,这些研究成果既可运用于车型平台开发,也可以用于现有产品的改进,从而使得奇瑞在产品研发阶段就能根据试验数据和研究分析结果对产品设计进行针对性调整,这是国内企业拥有完整汽车产品正向开发能力的一个重要标志。

  当秋冬季节来临,关上汽车的通风装置,喷上一些汽车香水,既保证了车内温度又消除了车内异味。然而,当你在喷上香水时,是否想过香水可能有毒?没有异味了是不是就意味着无毒?除的不是毒有异味,怎么办?汽车香水喷一喷!车内长时间封闭,会产生一股异味,难闻之极。这可能是因为车内密闭空气不流通,使得车内污染物的浓度升高,污染物主要是甲醛和苯系物。不久前关于空调致癌的言论已被证实致癌的是车内材料散发出来的甲醛。车内出现了异味的时候,很多车主会喷喷汽车香水,用汽车香水的香味来抵消异味,营造出一种空气“清新”的感觉。然而在如此“清新”的空气中,驾乘者往往还是会有一种头晕的感觉,这是为什么呢?其实,很多时候香水抵消的只是异味,不是毒性,在空气“清新”的车内,毒性一直都存在。当你喷上香水时,毒性却在一旁冷笑,嘲讽着:“小样,你以为闻不到就是没有毒了?”总结自己多年来的经验,某车主表示:“车内气味不好,有污染的几率很大,但是没味道不一定就没有污染。”专家称,用汽车香水掩盖污染物的味道,无异于掩耳盗铃。汽车香水或将毒上加毒汽车香水作为一种化学试剂,大部分以添加剂为主,大量吸嗅对人体有一定的危害,尤其对过敏体质的人。专家表示,香水的使用极有可能增加车内的毒性,造成车内“二次污染”。近几年对汽车香水的质疑一直都存在,汽车香水市场上的“三无产品”数量众多。据报道,劣质香水占汽车香水市场八成。虽然香水芳香、好闻,但并不意味着无毒。汽车芳香剂产品在使用过程中出现了很多问题,比如使消费者胸闷头晕、腐蚀接触面、产品脱胶甚至致癌。专家指出,车内空气质量差且有“毒”时,对人体健康影响比在室内更明显。专家支招防毒对于车内污染问题,专家建议车主:一、养成良好习惯,经常开窗通风。使用汽车时应打开车窗通风,让车内有毒物质尽量释放出去,最好能每小时开窗换气5分钟,或者使用一次空调外循环,让室内外空气得以交换,新车头半年更是要多通风换气。二、车内放置柠檬、活性炭包、柚子皮、空气净化器等。好处是:没有二次污染,而且对车内环境改善效果不错。三、有条件的人购车后做一个第三方空气检测,确定车内空气质量情况。若没超标,可正常使用 有超标,可与商家协商,让商家做空气治理、更换材料或高温蒸薰,可加速甲醛、苯等挥发。

  麒麟分析仪器与客户共创未来 中国*万安---浙江万安科技股份有限公司自设立以来,一直致力于汽车制动系统的研发、生产和销售,公司研发力量雄厚,拥有国家认定企业技术中心及国家认可实验室,是全国企事业知识产权示范创建单位、国家知识产权工作试点单位,参与起草多项国家和行业标准,位于北京清华科技园的北京金万安汽车电子技术研发有限公司是公司的汽车电子研发中心。公司主导产品:汽车电子控制系统、汽车制动系统、离合器操纵系统等。 公司主要为一汽集团、北汽福田、江淮等国内主要商用车厂商以及比亚迪、奇瑞、吉利等国内主要乘用车厂商提供配套,构筑了完善的采购与配套网络,努力打造汽车零部件的世界品牌。现代企业的竞争,不仅是单个企业实力的比拼,更是供应链间的较量。公司一向重视供应商的培养,带动供应商与万安共同成长,打造出了一支优秀的供应商队伍。为了控制核心原材料品质的检测,万安集团成立了检测中心,2009年被评为国家级实验室。被授予这么高的荣誉,首先我们要感谢南京麒麟分析仪器有限公司。在08年与南京麒麟仪器合作一套HW2000B高频红外碳硫仪和BS1000型多元素分析仪,到现在一直使用很棒,在检测碳钢、合金钢、生铸铁、球墨铸铁中C、S、Mn、P、Si、Cu、Cr等元素起到很大的作用,以前在光谱上做不准的高碳、高硫、高硅等元素,现在的南京麒麟仪器就解决了这个问题,仪器的精度高、操作简单、快捷、方便。弥补了光谱检测的不足。为我们检测汽车部件带来了很大的帮助。

  关于批准发布《轻质石油产品酸度测定法》等175项国家标准的公告国家质量监督检验检疫总局、国家标准化管理委员会批准《轻质石油产品酸度测定法》等175项国家标准,现予以公布(见附件)。国家质检总局国家标准委2016年6月14日序号标准号标准名称代替标准号实施日期1GB/T258-2016轻质石油产品酸度测定法GB/T-01-012GB/T503-2016汽油辛烷值的测定马达法GB/T-01-013GB/T1202-2016粗石蜡GB/T-01-014GB/T1427-2016炭素材料取样方法GB/T-05-015GB2024-2016针灸针GB-07-016GB/T2521.1-2016全工艺冷轧电工钢第1部分:晶粒无取向钢带(片)部分代替:GB/T-05-017GB/T2521.2-2016全工艺冷轧电工钢第2部分:晶粒取向钢带(片)部分代替:GB/T-05-018GB/T2972-2016镀锌钢丝锌层硫酸铜试验方法GB/T-05-019GB/T3409.2-2016大坝监测仪器钢筋计第2部分:振弦式钢筋计2017-01-0110GB/T3461-2016钼粉GB/T-05-0111GB/T3780.7-2016炭黑第7部分:pH值的测定GB/T3780.7-20062017-01-0112GB/T3780.21-2016炭黑第21部分:筛余物的测定水冲洗法GB/T3780.21-20062017-01-0113GB/T3780.22-2016炭黑第22部分:用工艺控制数据计算过程能力指数2017-01-0114GB/T3782-2016乙炔炭黑GB/T-01-0115GB/T4135-2016银锭GB/T-05-0116GB/T4464-2016染料泳移性的测定GB/T-01-0117GB/T4501-2016载重汽车轮胎性能室内试验方法GB/T-05-0118GB/T5461-2016食用盐GB-01-0119GB/T5473-2016塑料酚醛模塑制品游离氨的测定GB/T-01-0120GB/T5474-2016塑料酚醛模塑制品游离氨和铵化合物的测定比色法GB/T-01-0121GB/T5542-2016染料大颗粒的测定单层滤布过滤法GB/T-01-0122GB/T5687.4-2016氮化铬铁和高氮铬铁氮含量的测定蒸馏-中和滴定法GB/T5687.4-19852017-05-0123GB/T7130-2016塑料酚醛模塑制品游离酚的测定碘量法GB/T-01-0124GB/T7652-2016八角GB/T-01-0125GB/T8834-2016纤维绳索有关物理和机械性能的测定GB/T-01-0126GB/T9176-2016桑蚕干茧GB/T-01-0127GB/T9359-2016水文仪器基本环境试验条件及方法GB/T-01-0128GB/T10501-2016多菌灵原药GB1-01-0129GB/T12548-2016汽车速度表、里程表检验校正方法GB/T1-01-0130GB/T13235.1-2016石油和液体石油产品立式圆筒形油罐容积标定第1部分:围尺法GB/T13235.1-19912017-01-0131GB/T14456.3-2016绿茶第3部分:中小叶种绿茶2017-01-0132GB/T14456.4-2016绿茶第4部分:珠茶2017-01-0133GB/T14456.5-2016绿茶第5部分:眉茶2017-01-0134GB/T14456.6-2016绿茶第6部分:蒸青茶2017-01-0135GB/T14853.2-2016橡胶用造粒炭黑第2部分:细粉含量和颗粒磨损量的测定GB/T14853.2-20062017-01-0136GB15213-2016医用电子加速器性能和试验方法GB1-01-0137GB/T15776-2016造林技术规程GB/T1-01-0138GB15811-2016一次性使用无菌注射针GB1-01-0139GB/T17345-2016亚麻打成麻GB/T1-01-0140GB/T17776-2016饲料中硫的测定硝酸镁法GB/T1-01-0141GB/T18110-2016小型水电站机电设备导则GB/T1-01-0142GB18565-2016道路运输车辆综合性能要求和检验方法GB1-01-0143GB/T18610.2-2016原油残炭的测定第2部分:微量法2017-01-0144GB/T19389-2016载重汽车轮胎滚动周长试验方法GB/T1-05-0145GB/T21238-2016玻璃纤维增强塑料夹砂管GB/T2-05-0146GB/T21875-2016染料提升力的测定GB/T2-01-0147GB/T21883-2016荧光增白剂荧光强度的测定GB/T2-01-0148GB/T22271.3-2016塑料聚甲醛(POM)模塑和挤塑材料第3部分:通用产品要求2017-01-0149GB/T27992.3-2016水深测量仪器第3部分:超声波测深仪2017-01-0150GB/T30921.2-2016工业用精对苯二甲酸(PTA)试验方法第2部分:金属含量的测定2017-01-0151GB/T30921.3-2016工业用精对苯二甲酸(PTA)试验方法第3部分:水含量的测定2017-01-0152GB/T30921.4-2016工业用精对苯二甲酸(PTA)试验方法第4部分:钛含量的测定二安替吡啉甲烷分光光度法2017-01-0153GB/T30921.5-2016工业用精对苯二甲酸(PTA)试验方法第5部分:酸值的测定2017-01-0154GB/T30921.6-2016工业用精对苯二甲酸(PTA)试验方法第6部分:粒度分布的测定2017-01-0155GB/T30921.7-2016工业用精对苯二甲酸(PTA)试验方法第7部分:b*值的测定色差计法2017-01-0156GB/T32660.2-2016金属材料韦氏硬度试验第2部分:硬度计的检验与校准2017-01-0157GB/T32660.3-2016金属材料韦氏硬度试验第3部分:标准硬度块的标定2017-01-0158GB/T32470-2016生活饮用水臭味物质土臭素和2-甲基异莰醇检验方法2016-11-0159GB/T32675-2016塑料酚醛树脂液体甲阶酚醛树脂在酸性条件下固化时假绝热温升的测定2017-01-0160GB/T32676-2016卤化异丁烯-异戊二烯橡胶(BIIR和CIIR)评价方法2017-01-0161GB/T32678-2016橡胶配合剂高分散沉淀水合二氧化硅2017-01-0162GB/T32679-2016超高分子量聚乙烯(PE-UHMW)树脂2017-01-0163GB/T32680-2016日用陶瓷耐机械洗涤测试方法2017-01-0164GB/T32681-2016塑料酚醛树脂用差示扫描量热计法测定反应热和反应温度2017-01-0165GB/T32682-2016塑料聚乙烯环境应力开裂(ESC)的测定全缺口蠕变试验(FNCT)2017-01-0166GB/T32683.1-2016塑料用落球黏度计测定黏度第1部分:斜管法2017-01-0167GB/T32684-2016塑料酚醛树脂游离甲醛含量的测定2017-01-0168GB/T32685-2016工业用精对苯二甲酸(PTA)2017-01-0169GB/T32686-2016光敏材料用多官能团丙烯酸酯单体中有机溶剂的测定顶空进样毛细管气相色谱法2017-01-0170GB/T32687-2016氨基酸产品分类导则2017-01-0171GB/T32688-2016塑料酚醛树脂在加热玻璃板上流动距离的测定2017-01-0172GB/T32689-2016发酵法氨基酸良好生产规范2017-01-0173GB/T32690-2016发酵法有机酸良好生产规范2017-01-0174GB/T32691-2016汽车空调电磁离合器2017-01-0175GB/T32692-2016商用车辆缓速制动系统性能试验方法2017-01-0176GB/T32693-2016汽油中苯胺类化合物的测定气相色谱质谱联用法2017-01-0177GB/T32694-2016插电式混合动力电动乘用车技术条件2017-01-0178GB/T32695-2016包覆性超水分散性炭黑2017-01-0179GB/T32696-2016摄影已加工过的摄影材料上残留的硫代硫酸盐和其它相关的化学品的测定方法碘直链淀粉、亚甲基蓝和硫化银法2017-01-0180GB/T32697-2016塑料酚醛树脂萃取液电导率的测定2017-01-0181GB/T32698-2016橡胶配合剂沉淀水合二氧化硅粒度分布的测定激光衍射法2017-01-0182GB/T32699-2016光敏材料用多官能团丙烯酸酯单体纯度(酯含量)的测定毛细管气相色谱法2017-01-0183GB/T32700-2016空间生物学实验装置通用设计规范2016-09-0184GB/T32701-2016家电物流信息管理要求2017-01-0185GB/T32702-2016电子商务交易产品信息描述图书2017-07-0186GB/T32703-2016预包装类电子商务交易产品质量信息发布通则2017-01-0187GB/T32704-2016实验室仪器及设备安全规范天平仪器2017-01-0188GB/T32705-2016实验室仪器及设备安全规范仪用电源2017-01-0189GB/T32706-2016实验室仪器和设备安全规范噪声测量仪器2017-01-0190GB/T32707-2016实验室仪器及设备安全规范氧弹式热量计2017-01-0191GB/T32708-2016实验室仪器及设备安全规范反应釜2017-01-0192GB/T32709-2016实验室仪器及设备安全规范煤炭工业分析仪2017-01-0193GB/T32710.1-2016环境试验仪器及设备安全要求第1部分:总则2017-01-0194GB/T32710.2-2016环境试验仪器及设备安全规范第2部分:低温恒温循环装置2017-01-0195GB/T32710.3-2016环境试验仪器及设备安全规范第3部分:低温恒温槽2017-01-0196GB/T32710.4-2016环境试验仪器及设备安全规范第4部分:高温恒温循环装置2017-01-0197GB/T32710.5-2016环境试验仪器及设备安全规范第5部分:高温恒温槽2017-01-0198GB/T32710.6-2016环境试验仪器及设备安全规范第6部分:生物人工气候试验箱2017-01-0199GB/T32710.7-2016环境试验仪器及设备安全规范第7部分:气候环境试验箱2017-01-01100GB/T32710.8-2016环境试验仪器及设备安全规范第8部分:生化培养箱2017-01-01101GB/T32710.9-2016环境试验仪器及设备安全规范第9部分:电热恒温培养箱2017-01-01102GB/T32710.10-2016环境试验仪器及设备安全规范第10部分:电热干燥箱及电热鼓风干燥箱2017-01-01103GB/T32710.11-2016环境试验仪器及设备安全规范第11部分:空气热老化试验箱2017-01-01104GB/T32710.12-2016环境试验仪器及设备安全规范第12部分:盐槽2017-01-01105GB/T32710.13-2016环境试验仪器及设备安全规范第13部分:振荡器、振荡恒温水槽和振荡恒温培养箱2017-01-01106GB/Z32711-2016都市农业园区通用要求2017-01-01107GB/T32712-2016条斑紫菜种藻2017-01-01108GB/T32713-2016刀鲚人工繁育技术规范2017-01-01109GB/T32714-2016冬枣2016-10-01110GB/T32717-2016番木瓜长尾实蝇检疫鉴定方法2017-01-01111GB/T32719.1-2016黑茶第1部分:基本要求2017-01-01112GB/T32719.2-2016黑茶第2部分:花卷茶2017-01-01113GB/T32719.3-2016黑茶第3部分:湘尖茶2017-01-01114GB/T32719.4-2016黑茶第4部分:六堡茶2017-01-01115GB/T32727-2016肉豆蔻2017-01-01116GB/T32728-2016刺柏果2017-01-01117GB/T32729-2016干鼠尾草2017-01-01118GB/T32730-2016芥末籽2017-01-01119GB/T32731-2016辣椒粉显微镜检查法2017-01-01120GB/T32732-2016香草试验方法2017-01-01121GB/T32733-2016香草2017-01-01122GB/T32734-2016葫芦巴2017-01-01123GB/T32735-2016干百里香2017-01-01124GB/T32736-2016干薄荷2017-01-01125GB/T32742-2016眉茶生产加工技术规范2017-01-01126GB/T32743-2016白茶加工技术规范2017-01-01127GB/T32744-2016茶叶加工良好规范2017-01-01128GB/T32745-2016小型水轮机磨蚀防护导则2017-01-01129GB/T32746-2016岩土工程仪器信号与接口2017-01-01130GB/T32747-2016岩土工程仪器安全要求2017-01-01131GB/T32748-2016渠道衬砌与防渗材料2017-01-01132GB/T32749-2016水文缆道机电设备及测验仪器通用技术条件2017-01-01133GB/T32750-2016茶花鸡2017-01-01134GB/T32751-2016林甸鸡2017-01-01135GB/T32753-2016苎麻精干麻硬条(并丝)率试验方法2017-01-01136GB/T32754-2016苎麻精干麻切段开松麻2017-01-01137GB/T32755-2016大黄鱼2017-01-01138GB/T32756-2016刺参亲参和苗种2017-01-01139GB/T32757-2016贝类染色体组型分析2017-01-01140GB/T32758-2016海水鱼类鱼卵、苗种计数方法2017-01-01141GB/T32759-2016瘦肉型猪活体质量评定2017-01-01142GB/T32760-2016反刍动物甲烷排放量的测定六氟化硫示踪—气相色谱法2017-01-01143GB/T32761-2016溧阳鸡2017-01-01144GB/T32762-2016鹿苑鸡2017-01-01145GB/T32763-2016藏猪2017-01-01146GB/T32764-2016边鸡2017-01-01147GB/T32765-2016渤海黑牛2017-01-01148GB/T32766-2016最大拟长针线木材防腐剂性能评估的野外地上L连接件试验方法2017-01-01150GB/T32768-2016拉丁美洲热带木材树种鉴定图谱2017-01-01151GB/T32769-2016非洲热带木材树种鉴定图谱2017-01-01152GB/T32770-2016竹子名词术语2017-01-01153GB/T32771-2016白桦造林苗木质量分级2017-01-01154GB/T32772-2016红松人工林松梢象甲防治技术规程2017-01-01155GB/T32773-2016南方红豆杉紫杉醇原料林丰产栽培技术规程2017-01-01156GB/T32774-2016木质门内部结构特征X射线-01-01158GB/T32776-2016农药密度测定方法2017-01-01159GB/T32777-2016农药溶解程度和溶液稳定性测定方法2017-01-01160GB/T32779-2016超级杂交稻制种气候风险等级2017-01-01161GB/T32780-2016哲罗鱼2017-01-01162GB/T32781-2016中华鲟2017-01-01163GB/T32782-2016冰淇淋和冷冻甜食品中的脂肪测定哥特里-罗紫法2017-01-01164GB/T32783-2016蓝莓酒2016-10-01165GB/T32784-2016含镍生铁铬含量的测定过硫酸铵-硫酸亚铁铵滴定法2017-05-01166GB/T32785-2016钒钛磁铁矿冶炼废渣处置及回收利用技术规范2017-05-01167GB/T32786-2016含镍生铁铁含量的测定重铬酸钾滴定法2017-05-01168GB/T32787-2016锰系铁合金粉尘冷压复合球团技术规范2017-05-01169GB/T32788.1-2016预浸料性能试验方法第1部分:凝胶时间的测定2017-05-01170GB/T32788.2-2016预浸料性能试验方法第2部分:树脂流动度的测定2017-05-01171GB/T32788.3-2016预浸料性能试验方法第3部分:挥发物含量的测定2017-05-01172GB/T32788.4-2016预浸料性能试验方法第4部分:拉伸强度的测定2017-05-01173GB/T32788.5-2016预浸料性能试验方法第5部分:树脂含量的测定2017-05-01174GB/T32788.6-2016预浸料性能试验方法第6部分:单位面积质量的测定2017-05-01175GB/T32789-2016轮胎噪声测试方法转鼓法2017-05-01备注:GB/T2521-2008已全部被代替完。

  随着国民经济的发展和人民生活水平的提高,近几年,我国汽车工业发展迅速,2010年全国汽车产量已达1500万辆,已晋升为世界第一汽车生产和消费大国。塑料材料由于质轻、性能优良、成型效率高,在汽车零部件的生产中得到广泛应用,其质量的重要性日益突出。为此,中国塑料加工工业协会于2011年10月26日-28日在长春成功举办汽车塑料零部件生产工艺及质量检测技术高级研修班,主要研修学习汽车塑料零部件生产工艺、工艺参数对产品性能质量的影响和产品质量性能检测技术,研修学习将安排实习环节。 讲课专家主要来自国家汽车零部件产品质量监督检验中心(长春)、大众汽车、北京化工大学材料学院、北京石油化工学院、和国内著名注塑企业。 参加研修班学习的主要对象:汽车塑料零部件生产企业和相关单位的产品(研发)部和质控(质保)部技术和管理人员。(学习期间,将组织参观国家汽车零部件产品质量监督检验中心实验室)主办单位:中国塑料加工工业协会承办单位:中国塑料加工工业协会教育与培训委员会 北京三德斯科技有限公司赞助单位:长春市智能仪器设备有限公司 北京化工大学材料学院&mdash &mdash 苑会林教授参观长春智能&mdash &mdash 转矩流变仪高级研修班工程师参观&mdash &mdash 长春智能仪器&mdash &mdash 设备展厅研修班工程师王茜(左)与长春智能芮工(右)合影留念研修内容1、 我国汽车用塑料需求分析2、 国内外汽车用工程塑料性能比较3、 中国强制性产品认证制度(CCC)认证详解答疑4、 汽车塑料零部件(保险杠、仪表盘、油箱、内饰件、车灯、密封圈(条)、接线、 汽车塑料零部件的生产(PP、ABS、PS、PVC、PA、PC、POM、PBT等的)成型工艺及工艺条件对产品性能的影响6、 汽车塑料零部件改性配方与应用(保险杠、仪表板、 内饰件、方向盘、暖风机壳、空调管道及空调风口、后视镜壳、汽车电动玻璃机构部件、燃油系统部件、安全系统部件、座椅部件、发动机室内部件)7、 塑料零部件注塑缺陷原因分析8、特种工程塑料的研究与应用9、气体辅助注射技术在汽车塑料零部件生产成型中的应用10、汽车非金属材料零部件生产及供应(生产现状,在整车中的应用,主机厂供应要求等)11、汽车塑料零部件性能检测12、橡塑产品检测实验室管理13、Rosh指令及其相关法规概要 报告主要专家:一汽大众质保部非金属材料试验专家 于慧杰 高工吉林大学化学学院麦柯德尔米德实验室 卢晓锋 副教授 北京化工大学材料学院 苑会林 教授北京石油化工学院 杨明山 教授国家汽车检测中心(长春) 魏学颜 主任 研究员国家汽车零部件产品质量监督检验中心(长春) 李尚禹 博士 总工国家质检总局REACH工作组组长 李 聪 研究员 国务院特殊津贴获得者

  上海实施最严外地牌照限行政策自2020年11月2日起,每日7时至20时,上海部分主要高架路、大桥以及隧道道路禁止悬挂外省市机动车号牌的小客车、使用临时行驶车号牌的小客车、未载客的出租小客车及实习期驾驶员驾驶的小客车通行(周六、周日和全体公民放假日除外)。随着上海实施最严外地牌照限行政策或将引起新能源车抢购潮 但新能源汽车爆炸事故时有发生8月20日,一辆北汽新能源汽车在充电站充电时发生爆炸新能源汽车充电时容易发生爆炸那么车主的权益该如何保证呢?今天小菲就给大家介绍一款汽车诊断专用红外热像仪——FLIR TG275它是专为希望加速诊断过程和避免问题未被检测的汽车养护和维修技术员设计汽车维修技师的真实使用感受FLIR TG275是如何征服这些技师们的呢?小菲详细为你解读下吧~迅速找到问题的根源借助FLIR TG275,汽车维修技师能透过引擎盖,及时“看见”座舱内或车上诸多常见问题的根源。其工作测温范围为-25°C至+ 550°C,从冷空调到高温排气管或制动转子,轴承、涡轮增压器、差速器、冷却液系统、电气元件和电动汽车电池系统,用高精度、高能效的激光瞄准目标区域,确保组件测量准确无误,只需几秒即可完成检测,发现问题。点测温热像仪FLIR TG275是配备FLIR多光谱动态成像(MSX)技术的点测温热像仪,搭配专利双摄像头技术,加上19,200的红外图像分辨率,让其可以生成更清晰、更容易理解的图像。汽修检测人员可以轻松存储这些图像,从发现潜在故障到确认问题已修复,而且它还配备蓝牙低功耗(BLE)无线技术,该技术可轻松将图像转移到移动设备上,使用FLIR Tools生成专业报告,这样就可以将检修过程一一向客户展示,从而打消顾客的疑虑。坚固耐用,适用各款车型FLIR这款TG275采用坚固耐用的设计,IP54级防护封装可有效杜绝灰尘和水的侵害,完全可以胜任各种专业工作环境,无论是柴油卡车发动机还是建筑设备上的液压系统,均可轻松完成任务。其检测对象不局限于传统汽车。如今的新型混合动力电动汽车采用复杂的电池系统,充电或放电时,系统产生热量,从坏电池到断线,所有问题都可能导致部分电池无法正常工作,这些电池与工作正常的电池有着不同的热特征,因此很容易被TG275捕捉到。FLIR TG275还配有LED灯和激光指示器,用于指示被测表面的大小和面积,为温度测量作业提供指导。FLIR TG275经济实惠、简单易用,是解决电池、继电器、开关、排气歧管、空调冷凝器、传动系部件等相关问题的理想选择。新能源汽车行业前景大好,但安全隐患问题也要及时排查,避免造成更大的危险!

  今年,理想汽车检验检测中心正式通过中国合格评定国家认可委员会(CNAS)的审核,获得国家实验室认可证书。通过CNAS的审核,不仅标志着理想汽车检验检测中心,已正式迈入国家认可的实验室序列,更意味着其所出具的各类检测数据结果,将被全球100多个国家和地区的国际互认机构予以承认,具有国际权威性和公信力。而其涵盖的89个专项试验室,也首次浮出水面。今天, 将掀开部分试验室的神秘面纱,帮你从中窥一斑而知全豹,落一叶而知深秋,感受理想汽车检验检测中心的强大实力与理想汽车的技术底蕴。受访人:理想汽车检验检测中心工程师01 智能空间试验室——让脑海中的构想转瞬成为现实每一款理想汽车在打造之初,都是如何构思的?如何让车内的空间被最大程度合理利用?如何让每一处细节,兼顾质感的同时又符合家庭用户所需?当其他品牌还在脑海里凭空构想时,我们已通过自研的智能空间试验室,让一切成为现实。借助智能空间舱模拟器,产品和研发工程师们只需通过PAD上的简单操作,就可借助数字孪生的用户界面,轻松控制超过168个电机,实现座舱的柔性空间切换。就像拼乐高一样,工程师们可任意对座舱的350个模块单元,以智能电动的调节方式进行灵活的集成布置,快速完成对感知、交互与系统集成的开发与验证,将原本数周的工作周期缩短为寥寥几小时。“我们自研的空间舱,其尺寸可以覆盖主流的绝大多数车型,车身的各个部件都可基于需要,自由进行伸长、缩减、旋转,精度可达0.1毫米,进而实现柔性、安全的空间变换,为产品、研发工程师提供可验证、测试、展示、体验的智能座舱空间。门槛高度应该是多少才更方便一家老小上下车?B柱、C柱多宽才能在保证安全的同时更美观?后备箱离地多高才能拿取行李更加方便?这些原本需要依靠经验、想象的设计,现在都可以在现实里加以判断。小到空调出风口的摆动方式、车内氛围灯的氛围营造,大到不同尺寸车身所对应的空间布局、后备箱的布局等,也都可以借助空间舱,以更直观的方式呈现在所有产品与研发工程师面前,方便大家对其打磨、调整,让大家可以共创、共识出超越用户需求的设计方案。针对如今越来越多的智能交互,我们也在柔性座舱和柔性台架的基础上,增加了对于智能空间的验证。就比如我们二排的屏幕,通过磁吸的方式,不仅可任意更换不同尺寸的屏幕,去验证用户的使用感受,还可与二三排的座椅调节进行联动,让屏幕下翻后,二排座椅自动后移并调节仰角,帮助研发伙伴找出适合绝大多数用户的最佳观影角度。同时,由于我们的座舱顶棚与车身是分体结构,我们也实现了同一时间内,不同业务伙伴的同时开工。负责车内视觉摄像头的伙伴,可以在顶棚这边去测试摄像头是否能精准捕捉车内乘员的动作,而负责座椅的伙伴则可在柔性台架上调整座椅布局,而负责氛围灯的伙伴则可在车门、中控台上验证不同的氛围灯设计方案。过去,这一切都要等到车身基本成型后,才可进入试验阶段,而随着我们空间舱的落成,现在都可与车身的开发同期进行。”负责智能空间试验室的工程师玉亭介绍。02 电磁兼容试验室——构建强大的电磁“免疫系统”你在行车过程中,是否也曾出现过突然闪屏、音响发出杂音?出现这类情况,虽然有一定可能是由于线路接触不良、电压不稳等原因造成,但多数情况则是由于电磁干扰导致。“过去,传统的燃油车都是机械结构,对电磁兼容几乎没有要求。但随着科技进步,如今即便是燃油车,其刹车、换挡、转向助力等,也都已变成了电子的。而对于智能电动车,电磁干扰带来的影响则会愈发明显。像我们理想的车辆,不论是电池、电机、电控的‘老三电’,还是冰箱、彩电、大沙发的‘新三电’,以及我们的智能驾驶、智能空间,其背后都是大量精密、复杂的电子设备。它们都会持续释放微弱的电磁波,彼此产生干扰的同时也会对车外产生干扰。另一方面,城市里的电磁环境也相较以往更加复杂,无线电台、电视台、基站等,都会对车内的电子设备产生一定干扰。极端情况下,过大的电磁辐射,甚至会直接引起周边的电子设备功能失效或误动作,甚至击穿电子器件,对用车安全造成严重影响。就比如市郊的一些广播电台,很多年前当各个品牌都还不重视电磁干扰时,电动车一开到那附近就会出现问题,轻则黑屏、花屏、杂音,重则直接电压下降,车辆直接‘趴窝’。”工程师陈大可介绍。为了保证我们每一台理想汽车上,各个电子设备的稳定运行,特别是在强电磁环境中依然能够正常使用,我们重金打造了电磁兼容试验室,具备整车以及高低压电子电器零部件的电磁兼容及射频测试能力,以应对新能源汽车电子电气系统集成化,智能化和网联化带来的电磁兼容挑战,让每一台理想汽车都通过了堪比航空级别的EMC电磁兼容性测试。我们EMC测试能力同时满足国家法规与欧盟出口法规,测试项目覆盖度达到行业内的领先水平,测试频率范围可达DC~18GHz,测试场强30V/m~300V/m,充分模拟车辆在社会道路上行驶所能接收到的各种电磁干扰,进而为每一台理想汽车构建起强大的电磁“免疫系统”。03整车半消声室——在这里体验“落针可闻”乍一眼看到整车半消声室,你很可能会发出这样的疑问,“就这?很厉害么?”但当你真的步入这一试验室,你可能会第一次理解,到底什么才叫万籁俱寂、落针可闻。极度的静谧,甚至会让你的耳朵一时间都产生不适。工程师老郑介绍,“只有在极度安静的环境内,我们才能准确识别出车上的各类声音,而在自然界中这种环境并不存在。一般来说街面上的音量约为60、70分贝,办公室约为40、50分贝。但在我们的试验室里,本底噪音仅10分贝。为此,我们不止墙面上全部被复合型吸音材料覆盖,整个试验室我们甚至都采用了‘房中房’的结构,在内房与外房的底部结构之间填充了大量的隔振块进行隔振降噪处理,这才实现了这份极致的安静。另一方面,为了评价行驶过程中整车、零部件的声音表现,我们还在试验室地下打造了一个高达9米的巨型空间,在那里布置了一整套的四驱四电机静音转毂,不仅可模拟道路正常行驶模式,还可模拟反拖车辆运行,同时兼容两驱、四驱。即便试验过程中转毂速度提升至270km/h时,其所产生的噪音依然可控制较低的噪音工况。”随着整车半消声室的落成,其能力已全面覆盖动力系统、热管理系统、声学包、电器品质、开关门品质的开发需求,仅此每年便可为我们节省数百万的外委试验费用。以动力系统为例,我们自研的理想2.0增程系统采用全套机械静音设计,增程器开启对比纯电模式,噪音相差仅不到1分贝。很大程度上,就得益于整车半消声室提供的助力。针对动力系统的NVH性能,如增程器振动噪声、电驱系统振动噪声、进排气系统噪声、供油系统噪声等,我们都可借助大量的试验不断加以优化,进而不断打破行业固有认知,为用户打造更为安静的“家”。04 整车环模排放试验室——自由操控天气的奇异空间每一次用户舒适度上的提高和行车能耗的降低,其背后往往都是车辆在整车环模试验室里无数次试验后的成果。在我们自建的整车环模排放试验室,可最大程度模拟不同温度、湿度、日照、气流等环境,进行油耗、冷启动、续航里程等测试,更可根据企业标准进行热平衡热害试验、空调降温试验、除霜除雾试验等各类可靠性试验。理想汽车的每一款车,无论是一开始的原型试制阶段,还是SOP阶段,都需要在整车环模排放试验室里持续进行大量测试。我们的高低温环境仓可提供-40℃~60℃的高低温环境,以及最大1200W/㎡的红外阳光模拟环境,湿度最高可达95%;底盘测功机支持前后两驱及四驱模式;排放设备为目前最新一代产品,具备国V、国VI排放试验能力。与一些环境模拟实验室仅能实现单一的环境测试不同,我们可联动温度、光照、湿度等,打造更为贴近真实用车场景的复杂环境。在过去,环境模拟几乎要看天吃饭,高温、高寒的试验,很难具备前期的准备和后期改进的条件。天气再恶劣也是一时的,很难无时无刻都保持相同的状态。而借助整车环模排放试验室,则可凭借其稳定的环境模拟条件,为各种开发及验证提供可重复的、稳定的、不受外部影响的测试边界条件。同时,在相同环境条件下的多次重复测试,也更有利于评估和详细分析试验数据显著的试验特性和产品分析特性,具备安全、节能、试验精度高、一致性高等优点。“大量的模拟环境测试,并不会减少我们在真实场景下的验证。我们相当于在大量的方案里,通过模拟的环境,在较短的时间内快速筛选出其中表现最好的部分方案,再结合大量的真实路测,全面覆盖极热、极寒、高湿地域,挑选出表现最佳的那一个,呈交给用户。不夸张地说,我们自建的整车环模排放试验室,仅一年多的时间,为公司节省下的各类费用就已经能覆盖我们所有的前期投入成本,剩下的时间里,我们无时无刻都在‘纯赚’。”工程师强哥说。05 以最高标准打造,是我们技术自研的底气像这样的试验室,在理想汽车的研发中心足足还有80余个。在碳化硅功率模块试制车间与试验室,我们实现了微米级的印刷、打线、测量与检测,并可进行完整的性能与可靠性验证;在结构强度试验室,我们复现了不同的路面情况,不断考察车身及底盘结构可靠耐久性;在电池试验室,我们全面探索更安全、更高效的新一代电芯解决方案,麒麟5C电池也是在这里经过了我们的反复检验;在获得杜比官方认证的空间声学试验室里,我们打造出了理想汽车首创的7.3.4全景声音响系统......截止目前,理想汽车检验检测中心已分别在北京研发中心、上海研发中心、常州生产基地分设三个检测分中心,89间专项试验室,试验能力涵盖整车、系统、零部件、芯片、材料等车辆研发所必备的全部测试能力,试验范围可覆盖实物验证、仿真验证、软件测试、硬件在环测试、路试等,从产品研发到供应链全领域、全生命周期的验证。据负责试验室规划与建设的工程师张文希介绍,“为了确保我们每一次研发的新技术、打造的新产品都能拥有稳定的质量和性能,我们必须对其进行严格的研发测试。为此,早在公司成立之初,我们就已启动了对各类实验室的建设,并严格参照实验室认可服务的全球最高标准——ISO/IEC 17025加以打造。多年来的持续投入,让我们的各项研发验证都更加充分,不断提升产品的升级迭代效率。尽管一些第三方实验室也可以承接部分试验的工作,但无论从测试效率、测试成本,以及知识产权保护等方面,都相较我们自建实验室存在一定差距。以时效性为例,有些第三方试验室由于同时承接不同品牌的大量项目,往往光是排队就要1-2个月的时间,等做完试验,结果也要按照试验的先后顺序排队产出。一些处于研发期的项目,无论智能空间、智能驾驶、增程电动,还是电芯试制、车身底盘、结构强度耐久,我们都需频繁通过试验来辅助研发对方案进行验证,我们根本等不起。但在我们自建的试验室里,一方面我们会基于项目的优先级灵活协调安排,让价值高、时间紧的项目先做,并且第一时间就可产出结果,确保整体效率保持在较高水平。另一方面,凭借自建优势,我们也可将一些试验整合到一起,打造独属于我们理想汽车的试验室,帮伙伴们更便捷、更省心地进行各类项目的研发与验证。”由小到大,从零部件到整车,从功能到系统,我们始终用最为严苛的研发测试验证,去为每一个家庭用户,带来更为极致的驾乘体验。为更多用户创造移动的家,创造幸福的家。

  2021年8月3日,国际欧亚科学院院士、中国汽车工程学会特聘顾问、原中国汽车技术研究中心主任——王秉刚同志,因病医治无效,于当晚23时36分在天津逝世,享年83岁。图片来源:中国汽车技术研究中心有限公司王秉刚同志是原中国汽车技术研究中心主任、全国清洁汽车行动协调领导小组专家组组长、国家科技部 863 计划电动汽车重大科技专项特聘专家、国家电动乘用车技术创新联盟技术委员会主任、国家新能源汽车创新工程专家组组长、国际欧亚科学院院士。对我国汽车产业尤其是新能源汽车产业的发展做出了重要贡献。重要贡献王秉刚同志是我国汽车整车试验与可靠性技术的重要奠基人,是我国清洁汽车技术与新能源汽车技术的领军人,为我国汽车试验技术发展以及汽车转型升级工作做出了巨大贡献;同时作为主要成员参与了汽车领域国家重大战略规划及政策的研究制定,投身行业工作主持了电动汽车关键零部件及共性技术产学研协同创新等众多项目研究工作,并曾担任《汽车工程》等学术期刊主编职务,为行业技术进步做出了重要贡献。他曾获国家科技进步二等奖一项,机械部与一汽的科技奖若干项;2019年还获得中央、国务院、颁发的“中华人民共和国建国70周年纪念章”。提高我国汽车整车试验与可靠性技术试验水平,成就卓著早在1965年,他率队在新疆、西藏首次完成了我国汽车“三高”试验,即高原(海拔5000米)、高寒(-50℃)与高热试验(45℃)。他领导的试验小组建立了我国最早的汽车整车试验方法标准体系,自主研发了载重汽车大型底盘测功机与测功拖车,为我国汽车整车试验技术奠定了基础。他主持完成了我国第一个自主设计的汽车试验场--海南汽车试验场设计及建设,并建立了第一个试验场试验规范,对提高我国汽车试验水平做了重要贡献。推动我国清洁汽车与新能源汽车技术发展,做出卓越贡献:1998-2009年期间,他担任全国清洁汽车行动协调领导小组专家组组长、科技部“清洁汽车关键技术攻关与产业化”项目总体组组长,牵头推动了我国压缩天然气(CNG)、液化天然气(LNG)汽车的自主研发及产业化。2006-2016年期间,他分别担任过科技部中德可再生交通能源合作项目中方协调人、国家863计划“节能与新能源汽车”重大项目监理咨询专家组组长、三部委(财政部、工信部、科技部)“新能源汽车技术创新工程重大专项”专家组组长等重要职务,主持推动了国家各类专项工程的实施,取得了丰硕成果,为新能源汽车技术发展做出了巨大贡献。在王秉刚的主持推动下,我国电动汽车核心零部件产业取得了长足进步,先进动力电池系统、高性能电驱动系统、高效热泵空调系统、制动能量回收系统、电动汽车安全预警技术等40多项关键零部件及共性技术成果落地,多数产品技术已实现了产业化,并且王秉刚还推动了30多项相关团体标准,其中,“汽车生命周期温室气体及大气污染物排放评价方法”更是国际上首次提出的标准体系。他还作为重要成员参与了我国《节能与新能源汽车产业发展规划2012-2020》、《汽车产业中长期发展规划》、《节能与新能源汽车技术路线》、《新能源汽车产业发展规划2021-2035》等重大战略规划及报告研究编制,贡献巨大。他的一生,光明磊落高风亮节,他的一生,崇尚科学求真务实,他的一生,心系民族汽车产业,他的一生,情怀祖国强大昌盛。再见,王秉刚同志。汽车产业的领军者!

  pspan style=color: rgb(192, 0, 0) 1 汽车用材料测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong高分子材料测试/strong/pp机械力学性能、热学性能、绝缘电性能、耐化学药品测试、人工加速老化、燃烧测试等/pp /ppstrong反光测试测试/strong/pp尺寸、颜色、反光性能、耐着力、冲击性能、冲击强度、抗磨性能、色牢度、盐雾试验、压缩性能、绕曲强度、裂纹等/pp /ppstrong泡沫泡棉材料测试/strong/pp表观密度、压缩形变、硬度、拉伸性能、吸水率、导热系数、反抗弹力、燃烧性能等/pp /ppstrong橡胶材料测试/strong/pp密度、硬度、拉伸性能、冲击性能、挠曲性能、门尼粘度、热学性能、燃烧试验、人工加速老化试验、耐化学试剂、耐油试验等/pp /ppspan style=color: rgb(192, 0, 0) 2 汽车外饰件测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong适用产品/strong/pp汽车前后塑料(金属)保险杠、金属& 非金属翼子板、后视镜壳、发动机罩、外装饰件、防撞条等/pp /ppstrong测试项目/strong/pp机械力学性能、刚强度、变形量测试、表层厚度测试、附着力测试、抗腐蚀测试、抗磨耗测试、高低温环境测试/紫外线老化测试、紫外/氙弧光老化、高低温环境力学试验、环境机械性能测试、沙尘/淋雨/飞石测试、金相测试、无损探伤、综合性能测试/疲劳耐久测试等/pp /ppspan style=color: rgb(192, 0, 0) 3 汽车内饰件测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong适用产品/strong/pp方向盘、汽车门内饰件总成、玻璃升降开关、汽车顶棚、遮阳板、车内扶手、立柱饰板、行李箱、各种开关、汽车座椅、汽车地毯等/pp /ppstrong测试项目/strong/pp材料重金属成分分析、挥发性有机化合物分析、车内其他受限制成分分析、内饰件材料阻燃成分分析、燃烧性能测试、燃烧烟雾尘粒测试、高低温/湿热测试、高低温冲击测试、温度/湿度/盐度多循环耐腐蚀测试、人工加速紫外光/氙弧光/自然光老化测试、各种环境下的机械冲击、机械拉压、变形量等力学测试、粉尘环境测试、霉斑环境测试、部件的装配、皮革/纺织品性能测试、雾化测试等/pp /ppspan style=color: rgb(192, 0, 0) 4 安全气囊测试/span/ppstrong电学试验/strong/pp短接电阻测量、模块电阻、绝缘试验等/pp /ppstrong机械试验/strong/pp机械振动试验、机械冲击试验、跌落测试等/pp /ppstrong声学试验strong/strong/strong/ppstrong/strong噪音试验/pp /ppstrong环境试验/strong/pp温度冲击试验、温度湿度循环试验、高温老化试验等/pp /ppstrong密封性试验/strong/pp防尘试验、防水试验/pp /ppspan style=color: rgb(192, 0, 0) 5 轮胎测试/span/pp尺寸、高速测试、动态测试、静载荷测试、强度、耐久性测试、离心测试、胎面磨耗测试等/pp /ppspan style=color: rgb(192, 0, 0) 6 底盘零部件测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong适用产品/strong/pp底盘零部件测试适用于铸铁、铸铝、合金以及塑料橡胶组建的材料测试,如变速箱、启动器、电池、同步带、三角皮带、散热器、风扇总成、水泵、管路和软管、离合器、燃油泵、油泵、燃油/机油/空气滤清器、燃油管、排气管、离合器弹簧、减震器、空调压缩机、空调蒸发器等/pp /ppstrong测试项目/strong/pp性能和老化测试(尺寸测量、表面分析、金相分析、无损探伤、表面处理、耐腐蚀测试、耐环境测试、强度测试、功能及耐久测试/疲劳测试等/pp电子振动测试 、 机械冲击/连续冲击测试/pp考验产品在各种环境变化中的机械力学性能/pp /ppspan style=color: rgb(192, 0, 0) 7 车载电子电气设备测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong适用产品/strong/pp车辆适用微电机、调节器、继电器、延迟器、汽车电喇叭、汽车信号闪光器、各种电气开关、汽车电线束、线束插接件、保险丝、点火线圈、火花塞、分电器、风窗洗涤器、车用雨刮系统、车用点烟器、车载影音系统、扬声器等/pp /ppstrong测试项目/strong/pp电磁干扰和抗干扰性能测试/pp汽车电子的高低温、湿度测试、温度冲击等耐环境测试和在特定环境下的性能测试/pp汽车电子的机械力学、高低频度震动、冲击等力学性能和耐久测试/pp汽车电子在粉尘、淋雨、酸性、霉斑等特殊环境下的各项指标测试/pp汽车电子的基本性能参数,如电流、电压降、运转噪声、绝缘介电常数、温升、接插力、耐击穿电压等测试/pp汽车电子的负荷、过载、插拔次数、疲劳和寿命的专门测试等/pp /ppspan style=color: rgb(192, 0, 0) 8 车载娱乐系统测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong汽车电器实验/strong/pp寄生电流测量、启动跳压、过电压试验、电压降试验、电池电压跌落试验、电源线上的纹波抗扰测试、开路试验、地偏置试验、电源偏置试验、短路试验、绝缘评估等/pp /ppspan style=color: rgb(192, 0, 0) 9 连接器测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong电学试验/strong/pp电压降测试、接触电阻测量、绝缘测试、瞬断测试/pp /ppstrong机械试验/strong/pp机械振动试验、自由跌落试验、机械冲击试验、相关力学试验、外壳强度试验/pp /ppstrong环境试验/strong/pp温度冲击试验、温度湿度循环试验、高温老化试验、防腐蚀强度试验、低温唤醒试验、高温耐久试验、低气压试验、快速温变试验、恒温恒湿试验、空气热冲击试验、温湿度循环试验、凝露试验、盐雾试验/pp /ppstrong密封性试验/strong/pp防尘、防水IP等级试验/pp /ppspan style=color: rgb(192, 0, 0) 10 中控总成测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong机械试验/strong/pp耐冲击测试、结构强度刚度测试、操作性能测试、模态分析/pp /ppstrong声学试验/strong/pp噪声试验/pp /ppstrong环境试验/strong/pp尺寸稳定性试验、红外光老化试验、温湿度循环试验/pp /ppspan style=color: rgb(192, 0, 0) 11 仪表板总成测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong机械试验/strong/pp耐冲击试验、结构刚强度测试、操作性能试验、模态分析/pp /ppstrong耐久试验/strong/pp手套箱耐久试验、出风口耐久试验、仪表板总成耐久试验、关键寿命试验/pp /ppstrong声学试验/strong/pp噪声试验/pp /ppstrong环境试验/strong/pp尺寸稳定性试验、红外光老化试验、温湿度循环试验/pp /ppspan style=color: rgb(192, 0, 0) 12 门系统测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong基本电学试验/strong/pp线阻测量、过电压试验、热保护试验、电流测量试验/pp /ppstrong功能试验/strong/pp摇窗机系统堵转力试验、玻璃摩擦力试验、高温环境下的功能试验、融变试验、玻璃运动速度试验、低温环境下的功能试验、防夹试验、运行噪音测试/pp /ppstrong强度试验/strong/pp进入力试验、玻璃在摇窗机机构上的固定试验、无门框系统玻璃横向试验力/pp /ppstrong耐久试验/strong/pp常温耐久试验、环境耐久试验、结冰试验/pp /ppspan style=color: rgb(192, 0, 0) 13 门内饰测试/span/pp /ppstrong机械试验/strong/pp力载荷下的门内饰尺寸稳定性试验、饰带区域试验的尺寸稳定性/pp /ppstrong强度试验/strong/pp门拉手的试验误用力试验、顶面垂直方向最大承载力试验、拉出力测试、扶手最大承载力试验/pp /ppstrong耐久试验/strong/pp扶手耐久试验、地图袋耐久试验、门把手耐久试验/pp /ppstrong环境试验/strong/pp尺寸稳定性试验、红外光老化试验、温湿度循环试验/pp /ppstrong声学试验/strong/pp噪音测试/pp /ppspan style=color: rgb(192, 0, 0) 14 灯光系统测试/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong测试项目/strong/pp配光性能、光度、光色/色度、车内照度、聚焦、耐温耐湿试验、振动试验、防尘试验、耐溶剂试验、强度试验、热冲击、盐雾试验、防水试验、接触力试验、灯泡光电性能/pp /ppspan style=color: rgb(192, 0, 0) 15 油品品质检验/span/ppspan style=color: rgb(192, 0, 0) /span /ppstrong燃油及车用油品检测/strong/pp /pp主要检测产品/pp汽油、柴油、液化石油气、润滑油、润滑油添加剂、其他车用油品/pp /pp主要检测项目/pp辛烷值、十六烷值、组分分析、微量硫/总硫/活性硫、金属离子、颗粒分布、氧化安定性、苯、氮、密度/粘度、闪点/倾点/冷滤点、灰分/水分、馏程、铜片/银片腐蚀等、胶质、烯烃/烷烃/环烷烃/总芳烃、氧化物、润滑性、饱和蒸气压、汞含量等/pp /ppspan style=color: rgb(192, 0, 0) 16 尾气排放测试/span/ppstrongspan style=color: rgb(192, 0, 0) /span/strong /ppstrong检测项目/strong/pp /pp一氧化碳、二氧化碳、氮氧化物、二氧化硫、铅、光气、排放量等/pp /p

  “新能源汽车”重点专项2021申报指南:拟安排8.6亿元启动18个项目

  5月11日,科学技术部发布国家重点研发计划“新能源汽车”等“十四五”重点专项2021年度项目申报指南。“十四五”国家重点研发计划深入贯彻落实党的十九届五中全会精神和“十四五”规划,坚持“四个面向”总要求,积极探索“揭榜挂帅”等科技管理改革举措,全面提升科研投入绩效。“新能源汽车”重点专项2021年度项目申报指南本重点专项总体目标是:坚持纯电驱动发展战略,夯实产业基础研发能力,解决新能源汽车产业卡脖子关键技术问题,突破产业链核心瓶颈技术,实现关键环节自主可控,形成一批国际前瞻和领先的科技成果,巩固我国新能源汽车先发优势和规模领先优势,并逐步建立技术优势。专项实施周期为5年。2021年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕能源动力、电驱系统、智能驾驶、车网融合、支撑技术、整车平台6个技术方向,按照基础前沿技术、共性关键技术、示范应用,拟启动18个项目,拟安排国拨经费8.6亿元。其中,围绕全固态金属锂电池技术方向,拟部署不超过3个青年科学家项目,拟安排国拨经费不超过1500万元,每个项目500万元。原则上共性关键技术类项目,配套经费与国拨经费比例不低于1:1;示范应用类项目,配套经费与国拨经费比例不低于2:1。1. 能源动力1.1 全固态金属锂电池技术(基础前沿技术,含青年科学家项目)研究内容:全固态电池中电极(正极、负极)与固体电解质界面稳定化与自修复机制;微结构固态复合正极(含活性材料、 电解质、电子导电介质等)中电子、离子的输运特性;具有导电骨架结构的金属锂负极和固态电池中界面/结构对锂沉积形态的影响;超薄高离子电导率固体电解质层制备技术及面离子输运均匀性、机械强度、与正负极界面兼容性;新型电池结构、干法电极、新型电解质层制备方法及封装方式;电池内部温度/力学/电 化学场以及失效破坏等实验表征技术及固态电池综合评价方法。考核指标:固态复合正极比容量>400mAh/g;复合金属锂负极比容量>1500mAh/g;固体电解质厚度<15μm,室温电导率>1mS/cm,锂离子迁移数>0.8;全固态金属锂电池:容量>10Ah,比能量>600Wh/kg,循环寿命≥500 次。有关说明:支持一般项目的同时,并行支持不超过3个不同技术路线(互相之间、与一般项目之间技术路线均明显不同)的青年科学家项目;实施周期不超过5年。1.2 车用固体氧化物燃料电池关键技术(基础前沿技术)研究内容:针对不同燃料场景需求的车用燃料电池发电系统,研究固体氧化物燃料电池(SOFC)关键部件、电堆、系统设计及集成技术,主要包括:优化电极微观结构,研究高性能、高可靠电池结构设计及可控制备技术;优化连接体材料及结构,开发低成本连接体加工及涂层致密化技术;开发高一致性、长寿命电堆组装技术,形成千瓦级电堆批量制造能力;研发氢气、天然气、醇类等不同燃料处理技术及关键部件;集成不同燃料应用 场景的SOFC系统,研究系统快速启动响应技术,研究系统在模拟行驶工况下的应用安全。考核指标:建立车用SOFC关键部件、电堆与系统技术及理论体系。完成高性能、高可靠电池的结构设计和验证,电流密度 ≥300mA/cm2条件下,电压衰减≤4‰/千小时(运行时间≥1000h);形成低成本金属连接体及涂层材料加工工艺,连接体高温服役5000h,ASR≤30mΩ‧cm2;掌握SOFC电堆组装技术,单电堆功率≥1.0kW,电堆功率密度≥1.0kW/L,电效率≥60%;完 成氢气、天然气以及醇类等为燃料的SOFC系统开发,额定发电功率≥50kW,启动3分钟达50%输出功率,发电效率≥55%(DC,LHV),建立系统安全性能评价体系。有关说明:实施周期不超过 5 年。1.3 高密度大容量气氢车载储供系统设计及关键部件研制 (共性关键技术)研究内容:针对燃料电池重型车辆长途续航需求,研究车载储氢瓶、车载储氢系统设计、制造和检测技术,研究不同工况下大容量储氢的释放和泄露规律,研制车载70MPa大容量IV型瓶、集成瓶阀、储氢系统调压阀组、储氢系统控制器、氢气泄漏探测传感器等,形成高压力、大容量车载储氢系统。针对大功率燃料电池发动机供氢需求,研究大流量、高动态等复杂工况条件下供氢系统集成与控制技术,研制氢气流量控制阀组、循环引射器、机械循环泵等核心部件。针对燃料电池重型车辆快速加注需求,研究加氢口预冷高压大流量气氢在车载系统中的扩散、增压、升温等规律,获得稳定匹配与安全阈值控制技术,定义各部位材质循环加载要求、车载储氢系统受氢口与加氢枪的机械接口方式,开发面向高可靠、高安全的氢燃料快速加注操作流程、接插连接规范及通信协议。考核指标:车载70MPa大容量IV型瓶储氢系统有效储氢质量≥32kg,氢气泄漏率≤10mL/h,供氢能力≥7g/s,系统服役寿命≥10年;形成相应气瓶与瓶阀的自主知识产权及产品标准,制 定系统零部件、总体结构、集成设计等安全设计准则。其中,70MPa氢Ⅳ型瓶满足T/CATSI 02007—2020要求、容积≥400L,单瓶质量储氢密度≥6.8wt%,单位储氢能力碳纤维使用量<10.7kg/kg H2;集成瓶阀设计压力≥70MPa,内置电磁阀寿命≥50000次, 瓶阀功耗≤8W,瓶阀质量≤1.2kg,瓶阀集成电磁开关装置、过流量装置、超温超压泄放装置(TPRD)、温度检测装置和手动操作装置;调压阀组循环寿命≥50000次,输出压力波动范围10~15%,波动持续时间≤10s,输出流量≥7g/s,质量≤1.2kg;车载氢系统控制器具备独立加氢模式、红外通讯、6路以上氢安 全检测通道,具备加氢状态控制与停车氢安全巡检策略;加氢口及加氢枪加注速率≥7.2kg/min,加氢口使用寿命≥20000次,加 注过程瓶内气温≤85℃。大流量氢气流量控制阀组最大喷射流量≥7g/s(阀组流量),内外氢气泄露率≤0.3mL/h@30bar,耐久性: 喷射阀开闭次数不小于4亿次(比例电磁阀全开闭次数不小于500万次);大流量氢循环引射器压升≥50kPa,引射比≥2.2,电堆功率覆盖范围60~400kW;大流量氢气循环泵系统压升≥50kPa(采用氢气混合气体,循环流量≥3000slpm,氢气浓度≥90%),功耗≤1.5kW,效率≥46%,噪音≤70dB,寿命≥20000h。建立快速加注机械接口标准、通信协议和加注操作规范,并形成标准送审稿;加注协议标准符合国际通用需求。2. 电驱系统2.1 基于新材料和新器件的电驱动系统技术(基础前沿技术)研究内容:在电驱动系统集成与控制方面,研究SiC电驱动系统新结构、多物理场集成和全域高效控制方法,研究SiC电驱动系 统电磁兼容特性及抑制方法,解决SiC电驱动系统在高密度集成和高效控制的基础科学问题。开展新型电驱系统技术测试与分析,完成电驱系统前沿技术对标评价;开展车用服役条件下电驱系统功率器件、电机绝缘和轴承等系统致命故障检测、诊断和预测方法研究,形成电驱系统健康管理技术体系和标准规范。在新材料与新器件方面,研究高性能超级铜线(包括但不限于基于铜合金和铜/纳米管等复合材料的高性能超级铜线)及电机绕组制备技术,探索大电流SiC MOSFET芯片载流子输运性能高温骤降机理和抑制栅介质界面缺陷等可靠性增强方法,研究超低杂散参数/高效散热的SiC模 块与组件协同优化技术,实现材料与器件优化。考核指标:超级铜线×10-8Ωm,并应用于高性能电机样机;1200V SiC MOSFET单芯片通流能力≥ 250A@150℃,导通压降≤2.℃,最高结温250℃ , 阈值电压偏移≤0.1V@150℃;SiC电机控制器峰值功率体积密度≥70kW/L@峰值功率300kW,EMC 达CISPR等级4要求;提交电驱系统产品对标测试与技术分析报告共5份,每年样本量2套,提交电驱系统健康管理标准规范1项。有关说明:实施周期不超过5年。2.2 高性能轮毂电机及总成技术(共性关键技术)研究内容:在高性能轮毂电机及总成方面,突破轮毂电机与制动、转向和悬架系统深度集成与转矩矢量分配技术难题,实现轮毂电机系统性能、功率密度和转矩密度的持续提升,为全新电动化底盘开发和产业化提供核心零部件支撑;在高密度轮毂电机方面,研究高密度轮毂电机的电磁机热声等多物理场协同设计与仿真、故障诊断与容错控制、转矩脉动抑制、噪声抑制和可靠性与耐久性验证方法,开发轮毂电机的新材料、新结构和新工艺技 术(包括冷却结构、动密封等)。考核指标:轮毂电机总成30s峰值转矩重量比≥20N∙m/kg;轮毂电机总成系统最高效率≥92%,系统CLTC工况综合使用效率≥80%;轮毂电机在额定转速点(额定转矩转折点),1米噪声总声压级≤72dB(A),防护等级不低于IP68,冲击振动标准不低于传统轮毂指标,电磁兼容性能满足Class4级及以上,轮毂电机总成产品实现装车运行。形成可靠性与耐久性测试规范。2.3 混合动力专用发动机及高效机电耦合技术(共性关键技术)研究内容:研究高效清洁燃烧(包括但不限于新型喷射、高EGR率、新型点火、高压缩比、可变机构技术等)结构优化、高效热管理、高效后处理、先进控制策略、低摩擦和低噪声等混合动力专用发动机技术,开发出热效率高、排放好的混合动力专用发动机;研究新型构型、一体化机电集成、高效传动、高效热管理、动态控制和低噪声等机电耦合技术,开发出高效率、高集成、低成本的机电耦合变速箱。研究先进混动控制系统、高效混动控制策略、混动专用电机及电池、高压安全管理、测试验证等混动总成技术,实现总成高效和高可靠性,通过整车高效优化控制实现整车级行业领先动力和能耗指标。考核指标:专用发动机最高热效率≥45%,整车排放满足国六b+RDE;机电耦合系统机械传动效率≥95%,机电耦合系统综合效率≥85%(注:WLTC工况电平衡工况下的发电和驱动的加权综合效率);产品可靠性及寿命满足整车要求,实现装车运行。所搭载的整车0~100km/h加速时间≤7s,A级车在电量维持模式下油耗≤0.0018×(CM-1415)+3.8L/100km。混合动力专用高效发动机在额定功率下,1米噪声总声压级≤90dB(A);机电耦合系统在其基速点(转矩转折点),1米噪声总声压级≤78dB(A), 完成产品公告的量产车。3. 智能驾驶3.1 多域电子电气信息架构(EEI)技术(基础前沿技术)研究内容:构建基于服务的车路云网一体化集中式电子电气信息架构,探索高内聚、低耦合架构新形式,研究混合关键级任务调度与分配机理,建立域内、域间高可靠软件动态资源共享协议,探索车辆终端、边缘节点和云平台算力分配技术和通用应用开发架构,形成域内、域间、车云标准接口,实现软件模块复用以及整车软件管理;研究C-V2X和车载网络融合的新型架构底层软件设计关键技术,研究车载以太网和时间敏感网络等通信机制,设计高带宽、低时延、高可靠的软件信息系统构架,构建数据远程分析、诊断、调校与升级一体化技术平台;研究电子电气架构安全冗余体系,基于多维度安全设计方法,构建故障检测、主动重构控制及可靠高效的多层纵深防御体系;研究电子电气架构评估与实时性仿真分析技术,建立多层级、一体化电子电气架构测试验证体系,搭建车路云网一体化集中式电子电气信息架构测试平台;研究电子电气信息架构集成应用,实现技术应用与示范。考核指标:架构支持车路云一体化协同的高级别自动驾驶系统,可实现软硬件独立和域间协同计算,架构支持算力集中的弹性中央计算平台和分布区域管理控制器实现整车软件定义功能开发,形成具有自主知识产权的标准化软硬件接口≥400 个,接口包括:智能化传感器接口,原子服务接口,车—云标准接口和车与路侧设备接口等,标准接口支持2种以上的操作系统。电子电气架构一体化技术平台支持C-V2X信息交互,车辆相关软件升级时间≤20分钟,车载网络通讯速率可达10Gbit/s,时间敏感业务流转发时延小于50微秒,时间同步精度小于20纳秒。具有高可靠的冗余防失效机制,形成架构冗余设计准则和预期功能安全的解决方案。满足复杂电磁环境下的电磁安全要求,通过GB/T 18387和GB 34660标准 测试。建立信息安全纵深防御设计准则和防护策略。形成整车电子电气架构仿真、评估、优化和测试验证评价体系。在2家以上整车企业获得应用,完成相关技术标准或草案 3 项。有关说明:实施周期不超过5年。3.2 学习型自动驾驶系统关键技术(共性关键技术)研究内容:研究人车路广义系统的多尺度场景理解技术,开发交通参与者的长时域行为预测系统;自动驾驶感知—决策—控制功能在线进化学习技术,研发模型与数据联合驱动的高效迭代求解算法,开发通用的建模、优化与分析软件;研究自动驾驶系统的高实时车载计算装置,包括低功耗异构计算架构、分布式高效任务管理、策略模型压缩/编译/部署等关键技术;研制多维驾驶性能分析系统与训练平台,包括边缘场景的自然驾驶数据库、 以安全性为核心的驾驶性能评估模型、支持虚拟交通场景的半实物在环训练等;开发自动驾驶系统学习功能集成与测试验证技术,包括符合车规级标准的开发方法及测试流程,功能优化、故障诊断、远程监控、人机交互等辅助模块,以及封闭测试场和开放示范道路的试验。考核指标:典型交通参与者行为预测时域不少于5s,长时域 轨迹预测误差≤0.6m(横向)和≤2m(纵向);支持L3级及以上自动驾驶功能的自我进化训练,涵盖典型道路场景≥5类和交通参与者≥4类,在线min;车载计算装置运行L3级及以上自动驾驶算法模块时,单位功耗算力≥2Tops/W,主要功能模块平均延迟150ms;边缘场景的自然驾驶 样本片段≥1万个,边缘场景类型≥80类,自动驾驶性能评估模 型的准确性≥90%;训练平台支持≥100个交通节点虚拟交通场景,支持不少于20辆实车的封闭测试场或开放示范道路的验证; 制定国家/行业标准≥3项。3.3 智能汽车预期功能安全技术(共性关键技术)研究内容:研究智能汽车预期功能安全认知技术,包括与场景理解紧密相关的感知认知和决策规划等系统的性能局限分析技术、结合系统正向开发流程的危害分析及风险评估技术,构建面向智能汽车的预期功能安全量化评估模型;研究预期功能安全实时防护技术,构建预期功能安全实时监测与防护系统;研究降低预期功能安全风险的机器学习成长系统关键技术,包括面向自动驾驶机器学习成长平台的数据系统以及面向大数据的预期功能安 全高性能云计算技术;研究人机交互的预期功能安全关键技术,包括车内外人机交互的预期功能安全防护技术及其功能模拟技术;研究预期功能安全场景库建设及测试评价技术,包括场景库测评优先子集和覆盖梯度研究、搭建预期功能安全仿真测试模型,研究预期功能安全量化与测试评价技术,建立预期功能安全试验验证规范及标准。考核目标:开发预期功能安全实时防护系统一套,实现预期功能安全的实时保障,并在不少于20个边缘场景下进行技术验证;搭建面向大数据的数字孪生高性能云计算平台1套;开发自动驾驶系统预期功能安全分析、仿线套;开发有条件自动驾驶及以上级别的智能网联汽车预期功能安全测试案例库1套,测试用例≥300条;搭建预期功能安全实车测试平台1个;完成≥100万公里实车道路数据采集,构建预期功能安全场景≥1000个;完成预期功能安全量化开发及测试评价体系标准或草案1项。4. 车网融合4.1 智能汽车信息物理系统(CPS)技术(基础前沿技术)研究内容:面向智能汽车与信息通信及智能交通一体化,建立智能汽车信息物理系统基础理论,研究智能汽车信息物理系统架构体系构建、分析与构型优化方法;研究智能汽车信息物理融合机理,解构系统要素功能间协同机制与耦合规律,研究智能汽车信息物理系统建模方法;研究智能网联汽车信息物理系统开放性、涌现性和演进性特性,研究智能网联汽车信息物理系统全生命周期数字孪生重构设计与系统工程方法;研究智能汽车信息物 理系统测试验证与量化评估方法,建立智能汽车信息物理系统关键指标体系;研究智能汽车信息物理系统协同实现方法,构建典型参考系统以及系统确认方法。考核指标:建立智能汽车信息物理系统架构、特性分析、建模、设计、评估、验证、协同实现、系统确认与系统工程方法; 架构体系包含设计分析维度≥7个;总系统架构包含系统需求定义≥2000项,系统功能、逻辑和物理架构要素不少于4500个; 系统建模工具原型可支持不少于4个类别的模型融合;系统设计工具原型可支持不少于7个维度的系统全生命周期重构设计考量,且可支持不少于50个用户端的数据库并发访问修改和唯一设计版本溯源;智能汽车信息物理系统关键指标体系包含不少于7个维度的量化关键指标且总数不少于50个;智能汽车信息物理系统典型参考系统原型的可支持不少于16类智能汽车运行场景和不少于3000项测试用例的测试验证;完成相关理论著作不少于3项,技术指南或路线项,完成系统工程应用手册1套。有关说明:实施周期不超过5年。4.2 高精度自动驾驶动态地图与北斗卫星融合定位技术(共性关键技术)研究内容:研究支持自动驾驶的高精度动态地图模型与架构,研究面向中国道路特点、支持增量更新与扩展的地图数据模型,建立动静态、变分辨率地图数据的表达与存储机制;研究面向量产车众包数据的地图在线更新技术,研究地图数据实时加密与偏转技术;研究基于地图感知容器的网联汽车协同感知技术,建立车—路—云网联信息的多源融合机制;研究车规级北斗定位芯片与车载多源定位终端技术,构建基于北斗及其增强系统的车 载定位、导航、授时一体化系统,研究融合视觉、惯导与地图的智能全息组合主动定位技术;研究自动驾驶地图与定位系统的车载软硬件集成技术。考核指标:地图模型支持动静态多层数据调用,包括自动驾驶感知与决策的应用接口协议,地图覆盖公里数≥1万公里;高精度地图每100米相对误差≤15厘米,基于专业采集车地图更新 准确率≥99%,基于众包数据地图更新准确率≥90%;超视距无盲区感知检测准确率≥90%,动态信息传输延迟≤1秒;基于车载北斗卫星定位终端,多源信息融合实现高精度定位,试验场条件下,静态高精度增强定位误差≤1厘米,动态高精度增强定位误差≤10厘米,有卫星信号覆盖的常规城市综合路况下,动态高精度增强定位误差≤20厘米;支持具备车路协同感知功能的高精 度地图示范区域2个以上,完成相关技术标准或草案≥5项。4.3 自动驾驶仿真及数字孪生测试评价工具链(共性关键技术)研究内容:“人—车—路—环”耦合的高保真建模仿真技术, 研究高精度传感器、动力学、环境建模技术和强耦合机制,研发支撑L3及以上自动驾驶实时仿真软件;融合自动驾驶场景及交通流特征的云端仿真技术,研究包含中国自动驾驶事故场景特性的宏微观一体化交通流建模与加速测试技术,开发场景批量生成与高并发大规模云计算测试平台;车—云—场协同的自动驾驶在线加速测试评估技术,研究基于交通流的驾驶员行为、自动驾驶车辆行为的云端协同与场地孪生连续测评技术;多车协同的整车交通在环数字孪生技术,研制高灵敏的驱动、制动、转向一体化整车级系统平台,研究“人—车—路—环”实时模拟与虚实融合交互集成测试技术;自动驾驶测试评价平台及工具链,研究驾驶智能性评级、缺陷自动识别与安全性能认证技术,构建标准化的工具软件及硬件平台。考核指标:高精度自动驾驶仿真软件的极限工况动力学模拟精度≥90%;开放道路自动驾驶事故场景案例≥1000例;云控平台数据规模支持PB级,仿线个/分钟用例生成速率及 10000个/小时用例测试速率;数字孪生测试系统支持车速200km/h,最大制动强度10m/s2,最大转向角 40°;数字孪生支持虚、实传感器信号叠加;工具链支持L3级以上自动驾驶全流程测试,完成相关技术标准或草案不少于2项, 服务自动驾驶车型不少于20个。5. 支撑技术5.1 汽车电控单元关键工具链开发(共性关键技术)研究内容:研发汽车电控单元模块级软件建模工具,实现基于模型的软件设计功能;研发汽车电控单元软件测试验证工具,实现软件测试验证的流程标准化、接口统一化、测试自动化;研发汽车电控单元软硬件集成测试与标定工具,实现电控软硬件功性能的在线优化;研发车辆通讯总线仿真与测试工具,实现对车辆通讯总线的功能测试和性能优化;开发基于云技术的汽车电控单元设计仿真平台与模型库,实现自主工具链的云端并行计算技术。考核指标:汽车电控单元软件开发及验证的关键工具链能够满足V型开发流程,研制覆盖软件建模、软硬件测试、通讯总线仿真与测试等环节的关键工具不少于4种;汽车电控单元模块级软件建模工具能够支持系统图形化建模、连续与离散仿线项的基本功能;汽车电控单元软件测试验证工具支持图形化测试用例搭建、支持自定义测试用例库、测试用例库及测试计划统一管理等不少于3项基本功能;汽车电控单元软 硬件集成测试与标定工具能够支持不少于2种类型标定协议,支持用户可定制的图形标定界面,支持标定数据的记录以及刷写等 不少于3项基本功能;车辆通讯总线仿真与测试工具支持总线监测分析、总线激励、诊断服务等不少于3项基本功能;自主开发工具的云上服务平台实现云端用户登录不少于1000人次/12个月,工具链包含的云端模型库中有效模型数量不少于50个。5.2 关键车规级芯片的测试技术和评价体系研究(共性关键技术)研究内容:研究车规控制、通讯、计算、安全、存储芯片在车载使用要求下的可靠性、电磁兼容性测试技术,设计开发基于FPGA半实物平台和芯片实物平台的车规芯片功能安全测试用例库及测试技术;针对智能驾驶使用要求,研究车规计算芯片的算力、能耗测试技术;针对网联驾驶使用要求,研究车规信息安全芯片基于国密算法安全保证能力的信息安全测试技术;搭建车规控制、通讯、计算、安全、存储芯片测试平台,建立其在车载使用要求下的评价方法和评价体系。考核指标:搭建支持多样本(≥20个)同步试验、试验温度范围-40~250℃、湿度相对湿度65%、压力≥15psig(磅/平方英寸)的环境应力试验系统,以及可施加电源(电压范围0~20V且分辨率10mV)偏置的寿命试验系统;搭建EMC测试环境,支持传导干扰(20Hz~108MHz)、辐射干扰(20Hz~40GHz)、HBM_ESD(10kV)、电源间断跌落实验(时间≤1ms);搭建支持1024数字通道资源,5G通讯速率,激励电压范围-0.5~+1.5V且分辨率为10μV的ATE测试系统;开发车规计算芯片测试系统,支持GPU/AI 等多种架构车规计算芯片在不同系统配置下(内核可配置、主频测试精度最小100MHz)的算力测试(范围覆盖 5~20TFlops、5~300Tops)及能耗测试(最高精度0.1W);设计开发支持车规芯片半实物和实物芯片的功能安全测试系统,测试范围覆盖车规计算芯片的总线、存储、DDR、时钟、IO、中断等硬件模块及底层软件,完成1~2款芯片功能安全测试用例开发至少1000条;开 发车规信息安全芯片国密算法(SM1~SM4)检测系统,支持被测芯片≥5000次/秒签名验签测试,开发支持置信度(ɑ值0.02~0.05) 任意定义且不少于4个真随机源任意开关的随机数据采集及随机性水平的测试平台,开发信息安全测试用例(包含安全攻击用例)至少100条;在车规芯片测试方面形成5项以上标准提案。5.3 车载储能系统安全评估技术与装备(共性关键技术)研究内容:研究多场景全工况多因素耦合下电池系统安全性损伤机理、演变规律及评价技术,研究电池系统热失控热扩散评价技术,研究电池系统失效致灾危害评估技术,研究电池系统使用寿命与安全耦合机制与规律,建立动力电池多维度安全性评价体系和标准;研究动力电池系统高频失效行为的孕育演化机制和复现评估技 术,研究车端感知、线下检测、云端数据协同的在役动力电池系统 安全性风险评估技术;开发智能无损检测装备及软件。研究多场景多因素耦合下车载氢系统失效机理、失效模式及定量化安全评估技术;研究车载氢系统失效危害评估技术,建立 车载氢系统多维度安全性评价体系;研究氢气泄露可视化检测技 术,研究车载氢系统微量氢泄漏检测技术;研究车载氢系统安全风险在线监测方法。考核指标:建立动力电池多维度安全性评价体系和装备;开发在役动力电池系统安全性智能无损检测系统不少于2套,测试准确度不低于90%;搭建车载氢系统安全性定量化评价体系和在线监测系统,在商用车和乘用车上进行应用验证,在线监测系统安全响应时间小于1秒;车载氢系统微量泄漏检测精度高于50ppm;车载氢系统严重泄漏预判准确率>95%;形成5项以上动力电池系统和车载氢系统安全性评价相关标准提案。5.4 高效协同充换电关键技术及装备(共性关键技术)研究内容:研究车—桩(站)—云多层级充电物理信息网体系架构,大数据驱动的安全高效充电管理与控制技术,研发车桩(站)互联互通实时数据交互平台;研究基于用户行为识别与充电设施状态感知协同的充电负荷时空多维度预测方法,充换电设施网点布局与站点构型规划方法;研究车—桩—云协同信息服务的运营管理与决策理论方法,用户行为识别与充电设施状态感知协同的车群充电规划方法与引导技术;研究快换站多型号动力电 池包融合存储、识别和充电技术,快换电池包标准化技术,多车型、多型号电池包识别和匹配技术,研发可多车型共用动力电池快换设备;研究多功率等级兼容的无线双向充放电技术,研发大功率、高效率、智能适配的双向无线充放电装备。考核指标:建成车桩数据交互平台,实现跨平台车桩数据互联互通,跨平台的数据互通与调用平均响应时间≤1s,高并发服务能力≥200万个,接入充电桩≥100万个,车≥100万台,车型≥100个,抗DDoS攻击能力≥200G/s;数据传输可靠性>99.95%, 信息安全通过三级等保评测;构建城市公共充换电场站建设规划模型和技术规范;充电桩利用率提高≥30%,车辆充电等待时间降低≥30%;快换电池系统兼容电池包类型≥3种,可更换车型≥3个,电池更换时间≤90s;无线cm,输出电压范围 DC250-900V,10%到 100%负载 范围内系统效率≥92%,最高效率≥94%,满足多车型互操作性, 实现3个以上车型搭载验证。6. 整车平台6.1 纯电动客车/乘用车高效高环境适应动力平台技术(共性关键技术)研究内容:研究极寒环境整车低能耗自保温技术,高温高湿环境下动力平台高效冷却技术、高绝缘和高安全防护技术;研究多应用场景的电驱动系统、动力电池系统内部温度预测方法、温控回路智能高效控制技术;研究电驱动、动力电池以及乘员舱热管理系统间的能耗耦合机理,研究高效智能化热管理控制技术,研发多热源协同智能高效一体化热管理系统;研究多阀门多通道多冷却回路一体化、压缩机低温可靠性、可变制冷剂充注量等空 调技术,研发低温高效热泵空调系统;研究基于功能域的动力平台高效集中式控制技术、基于大数据的整车能量管理优化标定技术,研发基于自主核心芯片的多合一高压集成控制器和网联化整车综合控制系统,研发高环境适应动力系统平台和专用化底盘。考核指标:12米纯电动客车:整车能耗≤52kWh/100km (CHTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥300km(CHTC 工况);-30℃环境下,车辆续驶里程不低于常温续驶里程的 85%,车辆冷启动时间≤8min,空调制热功率≥14kW,COP≥1.3。55℃环境下,空调制冷功率≥22kW,COP≥ 1.7;研制车型≥2个,30分钟最高车速≥100km/h,0~50km/h 加速时间≤15s,最大爬坡度≥25%,实现百辆级验证应用。B级乘用车:整车能耗≤14kWh/100km(CLTC工况);全气候(环境温度范围覆盖-30~+55℃)续驶里程≥500km(CLTC工 况);-30℃环境下车辆续驶里程不低于常温续驶里程的85%,车 辆冷启动时间≤5min,空调制热功率≥4kW,COP≥1.3。55℃环境温度下,空调制冷功率≥7.5kW,COP≥1.7;研制车型≥2个,最高车速≥180km/h;0~100km/h加速时间≤4s,满载最大爬坡度≥30%;实现千辆级验证应用。6.2 智能电驱动重载车辆平台关键技术及应用(示范应用)研究内容:开发智能电驱动重载车辆一体化平台架构,研究重载车辆的整车物理结构与电驱动系统、智能驾驶系统间的耦合机理与设计方法;开发面向恶劣环境的重载车辆智能驾驶系统, 研究颠簸路面大盲区多源传感器融合感知技术,研究强振动、重载荷等条件下车辆故障诊断及导向安全智能决策技术,研究大幅变载荷工况下车辆纵横向协调控制技术;面向复杂工况的重载车辆大功率智能电驱动系统开发,构建面向重载车辆的新型驱动系统拓扑结构,研究湿滑坡道下自适应力矩分配与预测型智能控制技术;开发面向多场景作业的智能电驱动重载车辆仿真验证平台,研究智能电驱动重载车辆的硬件在环仿真与编组作业模拟技术;开展典型场景下智能电驱动重载车辆的无人化协同作业示范 应用。考核指标:开发智能电驱动重载车辆的整车平台原理样机1套;小尺寸(0.5m×0.5m×0.5m)障碍物检测距离≥100m,距离检测误差≤0.3m,重载车辆在100吨及以上载重条件下停靠控制误差≤0.5m,可实现16%坡道的坡停坡起;开发自主可控的电驱动系统,与国际同类产品相比,特定场景与工况下综合能效提升20%,在 1km/h车速下仍可有效电制动;开发智能电驱动重载车辆仿线套;在典型场景下开展不少于50台100吨及以上载重车辆的无人化协同作业示范运行,并稳定运行1年以上,与国际同类产品相比,平均能耗降低 15%;形成相关技术标准或草案1项。附件:“新能源汽车”重点专项2021年度项目申报指南.pdf揭榜挂帅榜单.pdf形式审查条件.pdf编制专家名单.pdf

  从2023年初特斯拉官宣降价,问界、小鹏、蔚来、沃尔沃等品牌纷纷跟进开始,到3月湖北省掀起汽车补贴高潮,众多品牌争相“蹭热度”,这一轮汽车“降价潮”持续到如今,终于渐渐波澜平息。新能源汽车作为未来汽车行业的主力军,优越的性能和舒适的用车体验将越来越成为消费者的购车首选考虑因素。消费者在选购新能源汽车时,对比汽车品牌、续航能力、用车体验的同时,汽车质量是考虑最重要的一个因素。对于涉及到人身安全的质量情况,新能源汽车制造厂及其供应商在研发和质量控制过程,都采用了大量的检测技术和设备来实现对汽车的各个部件的研发与试验。今天就来介绍下FLIR A615/A655sc自动化在线红外热像仪产品在新能源汽车研发过程中的“妙用”。FLIR A615动力电池热失效失控实验新能源汽车的电动机、动力电池、电控系统为核心三部件,合称为三电系统,也是实验检测的重点。下面来给大家介绍下电动车辆国家工程试验室(上海中心)动力电池热失效失控试验流程:动力电池企业会在特别的实验室里进行检测,通过各种模拟实际情况来进行破坏实验。实验的目的主要是研究各种极端情况下电池被破坏时产生的危险状况或者爆炸影响,从而优化防护或者电池设计。下图为电动车辆国家工程试验室(上海中心)选用FLIR A615对动力电池系统进行电池安全测试过程的试验,通过试验来模拟和验证极端条件下的电池状态,为整体安全和电池设计安装优化做准备。搭配了护罩的FLIR A615相关案例分享:电池被刺爆破的瞬间,FLIR高速热像仪精准收集各项热数据!电控系统的IGBT设计IGBT是一台新能源汽车的控制核心和大脑,其技术门槛非常高,一般以毫米间距承受数千伏高压,以亚微米精细结构承受数千安培电流。因此其研发单位一般使用可搭载显微镜头的FLIR A615/A655s红外热像仪,以较高的工作频率(产品支持,,)来记录IGBT工作过程中的发热情况,从而对其安全性和热控工作进行辅助设计。上汽某汽车功率半导体公司是国内新能源汽车IGBT的主要供应商,其实验室采用FLIR A615红外热像仪搭配50μm镜头,对功率器件在模拟实车工作情况下的发热情况进行记录,优化了对温控的设计,完善了车载条件下的产品安全性。热像仪在新能源汽车研发过程中的其他应用车身轻量化设计新能源汽车为了增加续航,其车身轻量化设计也是非常关键的。江苏某汽车零部件有限公司就使用FLIR A615进行铸造开模过程的测试和温度控制,从而保证产品的开模温度的均衡性,为产品的良好品质和材料均整度奠定了良好基础。磨具开模图车身底盘焊接质量动力电池大都安装在底盘上,对电池的承载和防止刮擦磕碰的危险也非常重要,因此车身电池承载部分的生产加工也非常重要,某汽车零部件的主要供应商就选用FLIR A615热像仪对车身底盘电池承载部分进行焊接质量控制,有效地保证了焊接质量的稳定性和可靠性,使电池承载更安全、更有保证。轮胎耐久性实验目前绝大多数新能源汽车都有里程焦虑和充电时间的问题,因此续航能力就是一个非常重要的考虑因素。现在的新能源车一般都不设计备胎,因此轮胎的安全性试验就非常关键。某轮胎公司选用FLIR A615红外热像仪对轮胎模拟加速和高速运动过程中的轮胎台面温度分布情况进行测试。该企业使用FLIR A655sc对轮胎模拟耐久试验条件下,轮胎的温度异常情况进行监测和研究。通过对轮胎运行过程台面温度及温度分布的观测和记录,对轮胎的行程安全性、耐久性有了更加可视化的数据保证,对轮胎的质量控制和设计优化起到非常大的帮助。汽车通用设备的研发上海某汽车集团及其供应商,在不同品牌汽车的车辆实验中,使用FLIR A615和A655sc对转向盘加热、空调系统设计、安全气囊、车内温度耐受性,玻璃加热除霜,车灯研发等方面做了多维度、长时间、精细化的试验,对产品品质、整车的质量提升、产品组件的可靠性等实现了强有力的保证。玻璃加热除霜车内温度耐受性车灯研发,时长00:06安全气囊起爆试验,时长00:17转向盘加热试验FLIR A615/A655sc是易于控制、经济实惠且小巧便携的红外热像仪,非常适用于状态监控、过程控制/质量保证及火灾预防以及研发监测等。以上就是这两款产品在新能源汽车研发过程中,各个部件优化与提升的实验过程 。FLIR热像仪在新能源汽车的研发、设计、生产和使用过程中,都能帮助工程师和制造商提供有效的帮助。其中动力电池作为新能源汽车的主要部件,其安全性是车辆安全性的一个重要指标。在动力电池设计方面有需要的菲粉们小菲要告诉大家一个好消息5月16-18日菲力尔携E96/T500/A400/A700等多款高精红外热像仪在深圳国际会展中心参加2023国际电池博览会展位号:6GT027届时小伙伴们可以来到菲力尔展台亲手试用FLIR这几款产品

  为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100个实验室”进行走访参观。日前,仪器信息网工作人员参观访问了本次活动的第七十四站:长安汽车哈尔滨研究院试验检测所(以下简称试验检测所)。该检测所赵洪辉副所长、张志杰工程师接待了仪器信息网到访人员。赵洪辉副所长在长安汽车哈尔滨研究院试验检测所楼前留影赵洪辉副所长、张工程师向仪器信息网的编辑介绍了试验检测所的仪器设备以及进行的测试项目等情况。试验检测所前身为“哈飞汽车股份有限公司汽车检测中心”,成立于哈飞汽车建立之初的1984年,当时称汽车试验室,经过多年的发展和历代汽车试验人的努力,现已形成试验体系,拥有5000平米的试验工房,各类人员26人,其中管理人员7人,试验技术人员及工人19人,为保证哈飞汽车的产品质量做出了卓越的贡献。待检测的样车哈飞汽车与中国长安集团于2010年5月正式合并,同期,长安汽车哈尔滨研究院也正式投入运行。“哈飞汽车股份有限公司汽车检测中心”更名为“长安汽车哈尔滨研究院试验检测所”,隶属于长安汽车哈尔滨研究院,只承接对内业务,对样车的整体性能、零部件对整车的影响等进行测试、验证。测试内容包括环境试验、道路试验、强度试验、NVH试验等。试验检测所部分仪器设备:四通道道路模拟试验机将试验车辆安装在作动器托盘上,进行整车道路模拟试验。汽车道路模拟试验是将试验场的强化路载荷谱在道路模拟试验机上进行实车模拟,早期发现车体和悬架系统的缺陷,为早期整改提供依据,保证研发质量。 电动振动试验台上述两款产品由德国TIRA公司生产制造,TIRA公司具有40多年的振动台生产历史。TIRA振动试验台拥有各种推力规格、各种尺寸及规格的扩展台面及试验夹具。振动试验台主要用来检验汽车零部件的振动耐久性,如各种底盘件和电器件等。环境试验间环境试验间主要用来检测汽车的排放性能,经济性能,除霜除雾性能,冷启动性能,空调性能,热管理性能,采暖性能等。台湾高铁公司(GOTECH)试验机EMC试验室该试验间主要是用于保护车载接收机的无线电骚扰特性的测量和车辆、机动船和由火花点火发动机驱动的装置的无线电骚扰特性的测量,以及电器零部件的无线电骚扰。半消声室该试验间主要用于汽车NVH的声学测试,如通过噪声,怠速振动噪声,声源分析,传递路径分析等。 半消声室的局部左侧是AVL的低噪声转鼓,模拟道路行驶,右侧为测试用的麦克风阵列。各种传感器上图为测试用的部分传感器,包括测试踏板力的踏板力计,测试拉压力的应变式力传感器,测试驻车拉力的测力计,以及位移传感器等。赵洪辉副所长最后介绍到,试验检测所于1987年被原航空工业部认定为微型汽车产品质量监督检测中心;1988年被中国汽车摩托车联合会认定为汽车新产品鉴定试验单位;1993年通过国家技术监督局的计量认证;1997年通过中国航空工业总公司的质量认证,被认定为中国航空工业总公司汽车(哈尔滨)检测中心。2006年4月25日通过中国实验室国家认可委员会认可,2006年10月9日通过中国国家认证认可监督管理委员会的计量认证。试验检测所按照CNAS-CL01:2006《检测和校准实验室能力认可准则》的规定制定了质量体系。由于隶属组织机构调整,于2011年5月暂时放弃了CNAS资质,近期将重新向国家认可委申请CNAS资质。

免责声明:本站所有素材资源均来自用户分享和网络收集,仅供学习与参考,请勿用于商业用途,如果损害了您的权利,请联系网站客服,我们核实后会立即删除。
  • 热门资讯
  • 最新资讯
  • 下载排行榜
  • 热门排行榜